vello/tests/src/clip.rs
chad 02cc867950 command style metal timer queries + compute pass
This commit adds timestamps to compute pass boundaries for command style timer queries on metal.

It also updates the code in piet-gpu/stages, piet-gpu/lib.rs and tests/ to use the new ComputePass type.
2022-04-21 04:20:54 -04:00

236 lines
7.9 KiB
Rust

// Copyright 2022 The piet-gpu authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Also licensed under MIT license, at your choice.
//! Tests for the piet-gpu clip processing stage.
use bytemuck::{Pod, Zeroable};
use rand::Rng;
use piet_gpu::stages::{self, ClipBinding, ClipCode, DrawMonoid};
use piet_gpu_hal::{BufWrite, BufferUsage};
use crate::{Config, Runner, TestResult};
struct ClipData {
clip_stream: Vec<u32>,
// In the atomic-int friendly encoding
path_bbox_stream: Vec<PathBbox>,
}
#[derive(Copy, Clone, Debug, Pod, Zeroable, Default)]
#[repr(C)]
struct PathBbox {
bbox: [u32; 4],
linewidth: f32,
trans_ix: u32,
}
pub unsafe fn clip_test(runner: &mut Runner, config: &Config) -> TestResult {
let mut result = TestResult::new("clip");
let n_clip: u64 = config.size.choose(1 << 8, 1 << 12, 1 << 16);
let data = ClipData::new(n_clip);
let stage_config = data.get_config();
let config_buf = runner
.session
.create_buffer_init(std::slice::from_ref(&stage_config), BufferUsage::STORAGE)
.unwrap();
// Need to actually get data uploaded
let mut memory = runner.buf_down(data.memory_size(), BufferUsage::STORAGE);
{
let mut buf_write = memory.map_write(..);
data.fill_memory(&mut buf_write);
}
let code = ClipCode::new(&runner.session);
let binding = ClipBinding::new(&runner.session, &code, &config_buf, &memory.dev_buf);
let mut commands = runner.commands();
commands.upload(&memory);
let mut pass = commands.compute_pass(0, 1);
binding.record(&mut pass, &code, n_clip as u32);
pass.end();
commands.download(&memory);
runner.submit(commands);
let dst = memory.map_read(..);
if let Some(failure) = data.verify(&dst) {
result.fail(failure);
}
result
}
fn rand_bbox() -> [u32; 4] {
let mut rng = rand::thread_rng();
const Y_MIN: u32 = 32768;
const Y_MAX: u32 = Y_MIN + 1000;
let mut x0 = rng.gen_range(Y_MIN, Y_MAX);
let mut y0 = rng.gen_range(Y_MIN, Y_MAX);
let mut x1 = rng.gen_range(Y_MIN, Y_MAX);
let mut y1 = rng.gen_range(Y_MIN, Y_MAX);
if x0 > x1 {
std::mem::swap(&mut x0, &mut x1);
}
if y0 > y1 {
std::mem::swap(&mut y0, &mut y1);
}
[x0, y0, x1, y1]
}
/// Convert from atomic-friendly to normal float bbox.
fn decode_bbox(raw: [u32; 4]) -> [f32; 4] {
fn decode(x: u32) -> f32 {
x as f32 - 32768.0
}
[
decode(raw[0]),
decode(raw[1]),
decode(raw[2]),
decode(raw[3]),
]
}
fn intersect_bbox(b0: [f32; 4], b1: [f32; 4]) -> [f32; 4] {
[
b0[0].max(b1[0]),
b0[1].max(b1[1]),
b0[2].min(b1[2]),
b0[3].min(b1[3]),
]
}
const INFTY_BBOX: [f32; 4] = [-1e9, -1e9, 1e9, 1e9];
impl ClipData {
/// Generate a random clip sequence
fn new(n: u64) -> ClipData {
// Simple LCG random generator, for deterministic results
let mut z = 20170705u64;
let mut depth = 0;
let mut path_bbox_stream = Vec::new();
let clip_stream = (0..n)
.map(|i| {
let is_push = if depth == 0 {
true
} else if depth >= 255 {
false
} else {
z = z.wrapping_mul(742938285) % ((1 << 31) - 1);
(z % 2) != 0
};
if is_push {
depth += 1;
let path_ix = path_bbox_stream.len() as u32;
let bbox = rand_bbox();
let path_bbox = PathBbox {
bbox,
..Default::default()
};
path_bbox_stream.push(path_bbox);
path_ix
} else {
depth -= 1;
!(i as u32)
}
})
.collect();
ClipData {
clip_stream,
path_bbox_stream,
}
}
fn get_config(&self) -> stages::Config {
let n_clip = self.clip_stream.len();
let n_path = self.path_bbox_stream.len();
let clip_alloc = 0;
let path_bbox_alloc = clip_alloc + 4 * n_clip;
let drawmonoid_alloc = path_bbox_alloc + 24 * n_path;
let clip_bic_alloc = drawmonoid_alloc + 8 * n_clip;
// TODO: this is over-allocated, we only need one bic per wg
let clip_stack_alloc = clip_bic_alloc + 8 * n_clip;
let clip_bbox_alloc = clip_stack_alloc + 20 * n_clip;
stages::Config {
clip_alloc: clip_alloc as u32,
path_bbox_alloc: path_bbox_alloc as u32,
drawmonoid_alloc: drawmonoid_alloc as u32,
clip_bic_alloc: clip_bic_alloc as u32,
clip_stack_alloc: clip_stack_alloc as u32,
clip_bbox_alloc: clip_bbox_alloc as u32,
n_clip: n_clip as u32,
..Default::default()
}
}
fn memory_size(&self) -> u64 {
(8 + self.clip_stream.len() * (4 + 8 + 8 + 20 + 16) + self.path_bbox_stream.len() * 24)
as u64
}
fn fill_memory(&self, buf: &mut BufWrite) {
// offset / header; no dynamic allocation
buf.fill_zero(8);
buf.extend_slice(&self.clip_stream);
buf.extend_slice(&self.path_bbox_stream);
// drawmonoid is left uninitialized
}
fn verify(&self, buf: &[u8]) -> Option<String> {
let n_clip = self.clip_stream.len();
let n_path = self.path_bbox_stream.len();
let clip_bbox_start = 8 + n_clip * (4 + 8 + 8 + 20) + n_path * 24;
let clip_range = clip_bbox_start..(clip_bbox_start + n_clip * 16);
let clip_result = bytemuck::cast_slice::<u8, [f32; 4]>(&buf[clip_range]);
let draw_start = 8 + n_clip * 4 + n_path * 24;
let draw_range = draw_start..(draw_start + n_clip * 16);
let draw_result = bytemuck::cast_slice::<u8, DrawMonoid>(&buf[draw_range]);
let mut bbox_stack = Vec::new();
let mut parent_stack = Vec::new();
for (i, path_ix) in self.clip_stream.iter().enumerate() {
let mut expected_path = None;
if *path_ix >= 0x8000_0000 {
let parent = parent_stack.pop().unwrap();
expected_path = Some(self.clip_stream[parent as usize]);
bbox_stack.pop().unwrap();
} else {
parent_stack.push(i);
let path_bbox_stream = self.path_bbox_stream[*path_ix as usize];
let bbox = decode_bbox(path_bbox_stream.bbox);
let new = match bbox_stack.last() {
None => bbox,
Some(old) => intersect_bbox(*old, bbox),
};
bbox_stack.push(new);
};
let expected = bbox_stack.last().copied().unwrap_or(INFTY_BBOX);
let clip_bbox = clip_result[i];
if clip_bbox != expected {
return Some(format!(
"{}: path_ix={}, expected bbox={:?}, clip_bbox={:?}",
i, path_ix, expected, clip_bbox
));
}
if let Some(expected_path) = expected_path {
let actual_path = draw_result[i].path_ix;
if expected_path != actual_path {
return Some(format!(
"{}: expected path {}, actual {}",
i, expected_path, actual_path
));
}
}
}
None
}
}