vello/piet-gpu/bin/cli.rs
Raph Levien 307bf8d227 More blend mode fixes
Adds a test to visualize the blend modes. Fixes a dumb bug in blend.h and also a more subtle issue where default blending is not the same as clipping, as the former needs to always push a blend group (to cause isolation) and the latter does not. This might be something we need to get back to.

This should fix the rendering, so it fairly closely resembles the Mozilla reference image. There's also a compile-time switch to disable sRGB conversion, which is (sadly) needed for compatible rendering.
2022-05-17 16:12:05 -07:00

310 lines
12 KiB
Rust

use std::fs::File;
use std::io::BufWriter;
use std::path::Path;
use clap::{App, Arg};
use piet_gpu_hal::{BufferUsage, Error, Instance, InstanceFlags, Session};
use piet_gpu::{test_scenes, PicoSvg, PietGpuRenderContext, Renderer};
const WIDTH: usize = 2048;
const HEIGHT: usize = 1536;
#[allow(unused)]
fn dump_scene(buf: &[u8]) {
for i in 0..(buf.len() / 4) {
let mut buf_u32 = [0u8; 4];
buf_u32.copy_from_slice(&buf[i * 4..i * 4 + 4]);
println!("{:4x}: {:8x}", i * 4, u32::from_le_bytes(buf_u32));
}
}
#[allow(unused)]
fn dump_state(buf: &[u8]) {
for i in 0..(buf.len() / 48) {
let j = i * 48;
let floats = (0..11)
.map(|k| {
let mut buf_f32 = [0u8; 4];
buf_f32.copy_from_slice(&buf[j + k * 4..j + k * 4 + 4]);
f32::from_le_bytes(buf_f32)
})
.collect::<Vec<_>>();
println!(
"{}: [{} {} {} {} {} {}] ({}, {})-({} {}) {} {}",
i,
floats[0],
floats[1],
floats[2],
floats[3],
floats[4],
floats[5],
floats[6],
floats[7],
floats[8],
floats[9],
floats[10],
buf[j + 44]
);
}
}
/// Interpret the output of the binning stage, for diagnostic purposes.
#[allow(unused)]
fn trace_merge(buf: &[u32]) {
for bin in 0..256 {
println!("bin {}:", bin);
let mut starts = (0..16)
.map(|i| Some((bin * 16 + i) * 64))
.collect::<Vec<Option<usize>>>();
loop {
let min_start = starts
.iter()
.map(|st| {
st.map(|st| {
if buf[st / 4] == 0 {
!0
} else {
buf[st / 4 + 2]
}
})
.unwrap_or(!0)
})
.min()
.unwrap();
if min_start == !0 {
break;
}
let mut selected = !0;
for i in 0..16 {
if let Some(st) = starts[i] {
if buf[st / 4] != 0 && buf[st / 4 + 2] == min_start {
selected = i;
break;
}
}
}
let st = starts[selected].unwrap();
println!("selected {}, start {:x}", selected, st);
for j in 0..buf[st / 4] {
println!("{:x}", buf[st / 4 + 2 + j as usize])
}
if buf[st / 4 + 1] == 0 {
starts[selected] = None;
} else {
starts[selected] = Some(buf[st / 4 + 1] as usize);
}
}
}
}
/// Interpret the output of the coarse raster stage, for diagnostic purposes.
#[allow(unused)]
fn trace_ptcl(buf: &[u32]) {
for y in 0..96 {
for x in 0..128 {
let tile_ix = y * 128 + x;
println!("tile {} @({}, {})", tile_ix, x, y);
let mut tile_offset = tile_ix * 1024;
loop {
let tag = buf[tile_offset / 4];
match tag {
0 => break,
3 => {
let backdrop = buf[tile_offset / 4 + 2];
let rgba_color = buf[tile_offset / 4 + 3];
println!(" {:x}: fill {:x} {}", tile_offset, rgba_color, backdrop);
let mut seg_chunk = buf[tile_offset / 4 + 1] as usize;
let n = buf[seg_chunk / 4] as usize;
let segs = buf[seg_chunk / 4 + 2] as usize;
println!(" chunk @{:x}: n={}, segs @{:x}", seg_chunk, n, segs);
for i in 0..n {
let x0 = f32::from_bits(buf[segs / 4 + i * 5]);
let y0 = f32::from_bits(buf[segs / 4 + i * 5 + 1]);
let x1 = f32::from_bits(buf[segs / 4 + i * 5 + 2]);
let y1 = f32::from_bits(buf[segs / 4 + i * 5 + 3]);
let y_edge = f32::from_bits(buf[segs / 4 + i * 5 + 4]);
println!(
" ({:.3}, {:.3}) - ({:.3}, {:.3}) | {:.3}",
x0, y0, x1, y1, y_edge
);
}
loop {
seg_chunk = buf[seg_chunk / 4 + 1] as usize;
if seg_chunk == 0 {
break;
}
}
}
4 => {
let line_width = f32::from_bits(buf[tile_offset / 4 + 2]);
let rgba_color = buf[tile_offset / 4 + 3];
println!(
" {:x}: stroke {:x} {}",
tile_offset, rgba_color, line_width
);
let mut seg_chunk = buf[tile_offset / 4 + 1] as usize;
let n = buf[seg_chunk / 4] as usize;
let segs = buf[seg_chunk / 4 + 2] as usize;
println!(" chunk @{:x}: n={}, segs @{:x}", seg_chunk, n, segs);
for i in 0..n {
let x0 = f32::from_bits(buf[segs / 4 + i * 5]);
let y0 = f32::from_bits(buf[segs / 4 + i * 5 + 1]);
let x1 = f32::from_bits(buf[segs / 4 + i * 5 + 2]);
let y1 = f32::from_bits(buf[segs / 4 + i * 5 + 3]);
let y_edge = f32::from_bits(buf[segs / 4 + i * 5 + 4]);
println!(
" ({:.3}, {:.3}) - ({:.3}, {:.3}) | {:.3}",
x0, y0, x1, y1, y_edge
);
}
loop {
seg_chunk = buf[seg_chunk / 4 + 1] as usize;
if seg_chunk == 0 {
break;
}
}
}
6 => {
let backdrop = buf[tile_offset / 4 + 2];
println!(" {:x}: begin_clip {}", tile_offset, backdrop);
let mut seg_chunk = buf[tile_offset / 4 + 1] as usize;
let n = buf[seg_chunk / 4] as usize;
let segs = buf[seg_chunk / 4 + 2] as usize;
println!(" chunk @{:x}: n={}, segs @{:x}", seg_chunk, n, segs);
for i in 0..n {
let x0 = f32::from_bits(buf[segs / 4 + i * 5]);
let y0 = f32::from_bits(buf[segs / 4 + i * 5 + 1]);
let x1 = f32::from_bits(buf[segs / 4 + i * 5 + 2]);
let y1 = f32::from_bits(buf[segs / 4 + i * 5 + 3]);
let y_edge = f32::from_bits(buf[segs / 4 + i * 5 + 4]);
println!(
" ({:.3}, {:.3}) - ({:.3}, {:.3}) | {:.3}",
x0, y0, x1, y1, y_edge
);
}
loop {
seg_chunk = buf[seg_chunk / 4 + 1] as usize;
if seg_chunk == 0 {
break;
}
}
}
7 => {
let backdrop = buf[tile_offset / 4 + 1];
println!("{:x}: solid_clip {:x}", tile_offset, backdrop);
}
8 => {
println!("{:x}: end_clip", tile_offset);
}
_ => {
println!("{:x}: {}", tile_offset, tag);
}
}
if tag == 0 {
break;
}
if tag == 8 {
tile_offset = buf[tile_offset / 4 + 1] as usize;
} else {
tile_offset += 20;
}
}
}
}
}
fn main() -> Result<(), Error> {
let matches = App::new("piet-gpu test")
.arg(Arg::with_name("INPUT").index(1))
.arg(Arg::with_name("flip").short("f").long("flip"))
.arg(
Arg::with_name("scale")
.short("s")
.long("scale")
.takes_value(true),
)
.get_matches();
let (instance, _) = Instance::new(None, InstanceFlags::default())?;
unsafe {
let device = instance.device(None)?;
let session = Session::new(device);
let mut cmd_buf = session.cmd_buf()?;
let query_pool = session.create_query_pool(8)?;
let mut ctx = PietGpuRenderContext::new();
if let Some(input) = matches.value_of("INPUT") {
let mut scale = matches
.value_of("scale")
.map(|scale| scale.parse().unwrap())
.unwrap_or(8.0);
if matches.is_present("flip") {
scale = -scale;
}
let xml_str = std::fs::read_to_string(input).unwrap();
let start = std::time::Instant::now();
let svg = PicoSvg::load(&xml_str, scale).unwrap();
println!("parsing time: {:?}", start.elapsed());
test_scenes::render_svg(&mut ctx, &svg);
} else {
//test_scenes::render_scene(&mut ctx);
test_scenes::render_blend_grid(&mut ctx);
}
let mut renderer = Renderer::new(&session, WIDTH, HEIGHT, 1)?;
renderer.upload_render_ctx(&mut ctx, 0)?;
let image_usage = BufferUsage::MAP_READ | BufferUsage::COPY_DST;
let image_buf = session.create_buffer((WIDTH * HEIGHT * 4) as u64, image_usage)?;
cmd_buf.begin();
renderer.record(&mut cmd_buf, &query_pool, 0);
cmd_buf.copy_image_to_buffer(&renderer.image_dev, &image_buf);
cmd_buf.finish_timestamps(&query_pool);
cmd_buf.host_barrier();
cmd_buf.finish();
let start = std::time::Instant::now();
let submitted = session.run_cmd_buf(cmd_buf, &[], &[])?;
submitted.wait()?;
println!("elapsed = {:?}", start.elapsed());
let ts = session.fetch_query_pool(&query_pool).unwrap();
if !ts.is_empty() {
println!("Element kernel time: {:.3}ms", ts[0] * 1e3);
println!(
"Tile allocation kernel time: {:.3}ms",
(ts[1] - ts[0]) * 1e3
);
println!("Coarse path kernel time: {:.3}ms", (ts[2] - ts[1]) * 1e3);
println!("Backdrop kernel time: {:.3}ms", (ts[3] - ts[2]) * 1e3);
println!("Binning kernel time: {:.3}ms", (ts[4] - ts[3]) * 1e3);
println!("Coarse raster kernel time: {:.3}ms", (ts[5] - ts[4]) * 1e3);
println!("Render kernel time: {:.3}ms", (ts[6] - ts[5]) * 1e3);
}
/*
let mut data: Vec<u32> = Default::default();
renderer.memory_buf_dev.read(&mut data).unwrap();
piet_gpu::dump_k1_data(&data[2..]);
*/
let mut img_data: Vec<u8> = Default::default();
// Note: because png can use a `&[u8]` slice, we could avoid an extra copy
// (probably passing a slice into a closure). But for now: keep it simple.
image_buf.read(&mut img_data).unwrap();
// Write image as PNG file.
let path = Path::new("image.png");
let file = File::create(path).unwrap();
let ref mut w = BufWriter::new(file);
let mut encoder = png::Encoder::new(w, WIDTH as u32, HEIGHT as u32);
encoder.set_color(png::ColorType::RGBA);
encoder.set_depth(png::BitDepth::Eight);
let mut writer = encoder.write_header().unwrap();
writer.write_image_data(&img_data).unwrap();
}
Ok(())
}