vello/piet-gpu/shader/path_coarse.comp
Raph Levien 79cc9da811 Fancy flattening
Implement same flattening algorithm as kurbo.
2020-06-09 20:45:19 -07:00

266 lines
10 KiB
Plaintext

// Coarse rasterization of path segments.
// Allocation and initialization of tiles for paths.
#version 450
#extension GL_GOOGLE_include_directive : enable
#include "setup.h"
#define LG_COARSE_WG 5
#define COARSE_WG (1 << LG_COARSE_WG)
layout(local_size_x = COARSE_WG, local_size_y = 1) in;
layout(set = 0, binding = 0) buffer PathSegBuf {
uint[] pathseg;
};
layout(set = 0, binding = 1) buffer AllocBuf {
uint n_paths;
uint n_pathseg;
uint alloc;
};
layout(set = 0, binding = 2) buffer TileBuf {
uint[] tile;
};
#include "pathseg.h"
#include "tile.h"
// scale factors useful for converting coordinates to tiles
#define SX (1.0 / float(TILE_WIDTH_PX))
#define SY (1.0 / float(TILE_HEIGHT_PX))
#define ACCURACY 0.25
#define Q_ACCURACY (ACCURACY * 0.1)
#define REM_ACCURACY (ACCURACY - Q_ACCURACY)
#define MAX_HYPOT2 (432.0 * Q_ACCURACY * Q_ACCURACY)
vec2 eval_quad(vec2 p0, vec2 p1, vec2 p2, float t) {
float mt = 1.0 - t;
return p0 * (mt * mt) + (p1 * (mt * 2.0) + p2 * t) * t;
}
vec2 eval_cubic(vec2 p0, vec2 p1, vec2 p2, vec2 p3, float t) {
float mt = 1.0 - t;
return p0 * (mt * mt * mt) + (p1 * (mt * mt * 3.0) + (p2 * (mt * 3.0) + p3 * t) * t) * t;
}
struct SubdivResult {
float val;
float a0;
float a2;
};
/// An approximation to $\int (1 + 4x^2) ^ -0.25 dx$
///
/// This is used for flattening curves.
#define D 0.67
float approx_parabola_integral(float x) {
return x * inversesqrt(sqrt(1.0 - D + (D * D * D * D + 0.25 * x * x)));
}
/// An approximation to the inverse parabola integral.
#define B 0.39
float approx_parabola_inv_integral(float x) {
return x * sqrt(1.0 - B + (B * B + 0.25 * x * x));
}
SubdivResult estimate_subdiv(vec2 p0, vec2 p1, vec2 p2, float sqrt_tol) {
vec2 d01 = p1 - p0;
vec2 d12 = p2 - p1;
vec2 dd = d01 - d12;
float cross = (p2.x - p0.x) * dd.y - (p2.y - p0.y) * dd.x;
float x0 = (d01.x * dd.x + d01.y * dd.y) / cross;
float x2 = (d12.x * dd.x + d12.y * dd.y) / cross;
float scale = abs(cross / (length(dd) * (x2 - x0)));
float a0 = approx_parabola_integral(x0);
float a2 = approx_parabola_integral(x2);
float val = 0.0;
if (scale < 1e9) {
float da = abs(a2 - a0);
float sqrt_scale = sqrt(scale);
if (sign(x0) == sign(x2)) {
val = da * sqrt_scale;
} else {
float xmin = sqrt_tol / sqrt_scale;
val = sqrt_tol * da / approx_parabola_integral(xmin);
}
}
return SubdivResult(val, a0, a2);
}
void main() {
uint element_ix = gl_GlobalInvocationID.x;
PathSegRef ref = PathSegRef(element_ix * PathSeg_size);
uint tag = PathSeg_Nop;
if (element_ix < n_pathseg) {
tag = PathSeg_tag(ref);
}
// Setup for coverage algorithm.
float a, b, c;
// Bounding box of element in pixel coordinates.
float xmin, xmax, ymin, ymax;
PathStrokeLine line;
float dx;
switch (tag) {
/*
case PathSeg_FillLine:
case PathSeg_StrokeLine:
line = PathSeg_StrokeLine_read(ref);
xmin = min(line.p0.x, line.p1.x) - line.stroke.x;
xmax = max(line.p0.x, line.p1.x) + line.stroke.x;
ymin = min(line.p0.y, line.p1.y) - line.stroke.y;
ymax = max(line.p0.y, line.p1.y) + line.stroke.y;
dx = line.p1.x - line.p0.x;
float dy = line.p1.y - line.p0.y;
// Set up for per-scanline coverage formula, below.
float invslope = abs(dy) < 1e-9 ? 1e9 : dx / dy;
c = (line.stroke.x + abs(invslope) * (0.5 * float(TILE_HEIGHT_PX) + line.stroke.y)) * SX;
b = invslope; // Note: assumes square tiles, otherwise scale.
a = (line.p0.x - (line.p0.y - 0.5 * float(TILE_HEIGHT_PX)) * b) * SX;
break;
*/
case PathSeg_FillCubic:
case PathSeg_StrokeCubic:
PathStrokeCubic cubic = PathSeg_StrokeCubic_read(ref);
// Commented out code is for computing error bound on conversion to quadratics
vec2 err_v = 3.0 * (cubic.p2 - cubic.p1) + cubic.p0 - cubic.p3;
float err = err_v.x * err_v.x + err_v.y * err_v.y;
// The number of quadratics.
uint n_quads = max(uint(ceil(pow(err * (1.0 / MAX_HYPOT2), 1.0 / 6.0))), 1);
// Iterate over quadratics and tote up the estimated number of segments.
float val = 0.0;
vec2 qp0 = cubic.p0;
float step = 1.0 / float(n_quads);
for (uint i = 0; i < n_quads; i++) {
float t = float(i + 1) * step;
vec2 qp2 = eval_cubic(cubic.p0, cubic.p1, cubic.p2, cubic.p3, t);
vec2 qp1 = eval_cubic(cubic.p0, cubic.p1, cubic.p2, cubic.p3, t - 0.5 * step);
qp1 = 2.0 * qp1 - 0.5 * (qp0 + qp2);
SubdivResult params = estimate_subdiv(qp0, qp1, qp2, sqrt(REM_ACCURACY));
val += params.val;
qp0 = qp2;
}
uint n = max(uint(ceil(val * 0.5 / sqrt(REM_ACCURACY))), 1);
uint path_ix = cubic.path_ix;
Path path = Path_read(PathRef(path_ix * Path_size));
ivec4 bbox = ivec4(path.bbox);
vec2 p0 = cubic.p0;
qp0 = cubic.p0;
float v_step = val / float(n);
int n_out = 1;
float val_sum = 0.0;
for (uint i = 0; i < n_quads; i++) {
float t = float(i + 1) * step;
vec2 qp2 = eval_cubic(cubic.p0, cubic.p1, cubic.p2, cubic.p3, t);
vec2 qp1 = eval_cubic(cubic.p0, cubic.p1, cubic.p2, cubic.p3, t - 0.5 * step);
qp1 = 2.0 * qp1 - 0.5 * (qp0 + qp2);
SubdivResult params = estimate_subdiv(qp0, qp1, qp2, sqrt(REM_ACCURACY));
float u0 = approx_parabola_inv_integral(params.a0);
float u2 = approx_parabola_inv_integral(params.a2);
float uscale = 1.0 / (u2 - u0);
float target = float(n_out) * v_step;
while (n_out == n || target < val_sum + params.val) {
vec2 p1;
if (n_out == n) {
p1 = cubic.p3;
} else {
float u = (target - val_sum) / params.val;
float a = mix(params.a0, params.a2, u);
float au = approx_parabola_inv_integral(a);
float t = (au - u0) * uscale;
p1 = eval_quad(qp0, qp1, qp2, t);
}
// Output line segment
xmin = min(p0.x, p1.x) - cubic.stroke.x;
xmax = max(p0.x, p1.x) + cubic.stroke.x;
ymin = min(p0.y, p1.y) - cubic.stroke.y;
ymax = max(p0.y, p1.y) + cubic.stroke.y;
float dx = p1.x - p0.x;
float dy = p1.y - p0.y;
// Set up for per-scanline coverage formula, below.
float invslope = abs(dy) < 1e-9 ? 1e9 : dx / dy;
c = (cubic.stroke.x + abs(invslope) * (0.5 * float(TILE_HEIGHT_PX) + cubic.stroke.y)) * SX;
b = invslope; // Note: assumes square tiles, otherwise scale.
a = (p0.x - (p0.y - 0.5 * float(TILE_HEIGHT_PX)) * b) * SX;
int x0 = int(floor((xmin) * SX));
int x1 = int(ceil((xmax) * SX));
int y0 = int(floor((ymin) * SY));
int y1 = int(ceil((ymax) * SY));
x0 = clamp(x0, bbox.x, bbox.z);
y0 = clamp(y0, bbox.y, bbox.w);
x1 = clamp(x1, bbox.x, bbox.z);
y1 = clamp(y1, bbox.y, bbox.w);
float xc = a + b * float(y0);
int stride = bbox.z - bbox.x;
int base = (y0 - bbox.y) * stride - bbox.x;
// TODO: can be tighter, use c to bound width
uint n_tile_alloc = uint((x1 - x0) * (y1 - y0));
// Consider using subgroups to aggregate atomic add.
uint tile_offset = atomicAdd(alloc, n_tile_alloc * TileSeg_size);
TileSeg tile_seg;
for (int y = y0; y < y1; y++) {
float tile_y0 = float(y * TILE_HEIGHT_PX);
if (tag == PathSeg_FillCubic && min(p0.y, p1.y) <= tile_y0) {
int xray = max(int(ceil(xc - 0.5 * b)), bbox.x);
if (xray < bbox.z) {
int backdrop = p1.y < p0.y ? 1 : -1;
TileRef tile_ref = Tile_index(path.tiles, uint(base + xray));
uint tile_el = tile_ref.offset >> 2;
atomicAdd(tile[tile_el + 1], backdrop);
}
}
int xx0 = clamp(int(floor(xc - c)), x0, x1);
int xx1 = clamp(int(ceil(xc + c)), x0, x1);
for (int x = xx0; x < xx1; x++) {
float tile_x0 = float(x * TILE_WIDTH_PX);
TileRef tile_ref = Tile_index(path.tiles, uint(base + x));
uint tile_el = tile_ref.offset >> 2;
uint old = atomicExchange(tile[tile_el], tile_offset);
tile_seg.start = p0;
tile_seg.end = p1;
float y_edge = 0.0;
if (tag == PathSeg_FillCubic) {
y_edge = mix(p0.y, p1.y, (tile_x0 - p0.x) / dx);
if (min(p0.x, p1.x) < tile_x0 && y_edge >= tile_y0 && y_edge < tile_y0 + TILE_HEIGHT_PX) {
if (p0.x > p1.x) {
tile_seg.end = vec2(tile_x0, y_edge);
} else {
tile_seg.start = vec2(tile_x0, y_edge);
}
} else {
y_edge = 1e9;
}
}
tile_seg.y_edge = y_edge;
tile_seg.next.offset = old;
TileSeg_write(TileSegRef(tile_offset), tile_seg);
tile_offset += TileSeg_size;
}
xc += b;
base += stride;
}
n_out += 1;
target += v_step;
p0 = p1;
}
val_sum += params.val;
qp0 = qp2;
}
break;
}
}