vello/piet-scene/src/geometry.rs
Chad Brokaw 6f9e53459a Address review feedback
* Change pgpu-render header file generator to add a comment noting that the file is auto-generated
* Remove bin target and associated dependencies from piet-scene crate
* Remove FP constructors from the Color type
* Better codegen and rounding in Color::to_premul_u32()
* Add kurbo attribution for piet_scene::geometry module
2022-05-10 20:07:41 -04:00

228 lines
6.1 KiB
Rust

// Copyright 2022 The piet-gpu authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Also licensed under MIT license, at your choice.
// This module is based in part on kurbo (https://github.com/linebender/kurbo)
use bytemuck::{Pod, Zeroable};
use core::borrow::Borrow;
use core::hash::{Hash, Hasher};
/// Two dimensional point.
#[derive(Copy, Clone, PartialEq, PartialOrd, Default, Debug, Pod, Zeroable)]
#[repr(C)]
pub struct Point {
pub x: f32,
pub y: f32,
}
impl Hash for Point {
fn hash<H: Hasher>(&self, state: &mut H) {
self.x.to_bits().hash(state);
self.y.to_bits().hash(state);
}
}
impl Point {
pub const fn new(x: f32, y: f32) -> Self {
Self { x, y }
}
pub fn transform(&self, affine: &Affine) -> Self {
Self {
x: self.x * affine.xx + self.y * affine.yx + affine.dx,
y: self.y * affine.yy + self.y * affine.xy + affine.dy,
}
}
}
impl From<[f32; 2]> for Point {
fn from(value: [f32; 2]) -> Self {
Self::new(value[0], value[1])
}
}
impl From<(f32, f32)> for Point {
fn from(value: (f32, f32)) -> Self {
Self::new(value.0, value.1)
}
}
/// Affine transformation matrix.
#[derive(Copy, Clone, Debug, Pod, Zeroable)]
#[repr(C)]
pub struct Affine {
pub xx: f32,
pub yx: f32,
pub xy: f32,
pub yy: f32,
pub dx: f32,
pub dy: f32,
}
impl Affine {
pub const IDENTITY: Self = Self {
xx: 1.0,
yx: 0.0,
xy: 0.0,
yy: 1.0,
dx: 0.0,
dy: 0.0,
};
pub const fn new(elements: &[f32; 6]) -> Self {
Self {
xx: elements[0],
yx: elements[1],
xy: elements[2],
yy: elements[3],
dx: elements[4],
dy: elements[5],
}
}
/// Creates a new affine transform representing the specified scale along the
/// x and y axes.
pub fn scale(x: f32, y: f32) -> Self {
Self::new(&[x, 0., 0., y, 0., 0.])
}
/// Creates a new affine transform representing the specified translation.
pub fn translate(x: f32, y: f32) -> Self {
Self::new(&[1., 0., 0., 1., x, y])
}
/// Creates a new affine transform representing a counter-clockwise
/// rotation for the specified angle in radians.
pub fn rotate(th: f32) -> Self {
let (s, c) = th.sin_cos();
Self::new(&[c, s, -s, c, 0., 0.])
}
/// Creates a new skew transform
pub fn skew(x: f32, y: f32) -> Self {
Self::new(&[1., x.tan(), y.tan(), 1., 0., 0.])
}
pub fn around_center(&self, x: f32, y: f32) -> Self {
Self::translate(x, y) * *self * Self::translate(-x, -y)
}
/// Transforms the specified point.
pub fn transform_point(&self, point: Point) -> Point {
Point {
x: point.x * self.xx + point.y * self.yx + self.dx,
y: point.y * self.yy + point.y * self.xy + self.dy,
}
}
/// Compute the determinant of this transform.
pub fn determinant(self) -> f32 {
self.xx * self.yy - self.yx * self.xy
}
/// Compute the inverse transform.
///
/// Produces NaN values when the determinant is zero.
pub fn inverse(self) -> Self {
let inv_det = self.determinant().recip();
Self::new(&[
inv_det * self.yy,
-inv_det * self.yx,
-inv_det * self.xy,
inv_det * self.xx,
inv_det * (self.xy * self.dy - self.yy * self.dx),
inv_det * (self.yx * self.dx - self.xx * self.dy),
])
}
}
impl Default for Affine {
fn default() -> Self {
Self::IDENTITY
}
}
impl std::ops::Mul for Affine {
type Output = Self;
fn mul(self, other: Self) -> Self {
Self::new(&[
self.xx * other.xx + self.xy * other.yx,
self.yx * other.xx + self.yy * other.yx,
self.xx * other.xy + self.xy * other.yy,
self.yx * other.xy + self.yy * other.yy,
self.xx * other.dx + self.xy * other.dy + self.dx,
self.yx * other.dx + self.yy * other.dy + self.dy,
])
}
}
/// Axis-aligned rectangle represented as minimum and maximum points.
#[derive(Copy, Clone, Default, Debug, Pod, Zeroable)]
#[repr(C)]
pub struct Rect {
pub min: Point,
pub max: Point,
}
impl Rect {
/// Creates a new rectangle that encloses the specified collection of
/// points.
pub fn from_points<I>(points: I) -> Self
where
I: IntoIterator,
I::Item: Borrow<Point>,
{
let mut rect = Self {
min: Point::new(f32::MAX, f32::MAX),
max: Point::new(f32::MIN, f32::MIN),
};
let mut count = 0;
for point in points {
rect.add(*point.borrow());
count += 1;
}
if count != 0 {
rect
} else {
Self::default()
}
}
/// Returns the width of the rectangle.
pub fn width(&self) -> f32 {
self.max.x - self.min.x
}
/// Returns the height of the rectangle.
pub fn height(&self) -> f32 {
self.max.y - self.min.y
}
/// Extends the rectangle to include the specified point.
pub fn add(&mut self, point: Point) {
self.min.x = self.min.x.min(point.x);
self.min.y = self.min.y.min(point.y);
self.max.x = self.max.x.max(point.x);
self.max.y = self.max.y.max(point.y);
}
/// Returns a new rectangle that encloses the minimum and maximum points
/// of this rectangle after applying the specified transform to each.
pub fn transform(&self, affine: &Affine) -> Self {
Self::from_points([self.min.transform(affine), self.max.transform(affine)])
}
}