vello/piet-gpu/shader/gen/kernel4_gray.msl
Raph Levien 3b67a4e7c1 New clip implementation
This PR reworks the clip implementation. The highlight is that clip bounding box accounting is now done on GPU rather than CPU. The clip mask is also rasterized on EndClip rather than BeginClip, which decreases memory traffic needed for the clip stack.

This is a pretty good working state, but not all cleanup has been applied. An important next step is to remove the CPU clip accounting (it is computed and encoded, but that result is not used). Another step is to remove the Annotated structure entirely.

Fixes #88. Also relevant to #119
2022-02-17 17:13:28 -08:00

731 lines
22 KiB
Plaintext
Generated

#pragma clang diagnostic ignored "-Wmissing-prototypes"
#pragma clang diagnostic ignored "-Wmissing-braces"
#include <metal_stdlib>
#include <simd/simd.h>
using namespace metal;
template<typename T, size_t Num>
struct spvUnsafeArray
{
T elements[Num ? Num : 1];
thread T& operator [] (size_t pos) thread
{
return elements[pos];
}
constexpr const thread T& operator [] (size_t pos) const thread
{
return elements[pos];
}
device T& operator [] (size_t pos) device
{
return elements[pos];
}
constexpr const device T& operator [] (size_t pos) const device
{
return elements[pos];
}
constexpr const constant T& operator [] (size_t pos) const constant
{
return elements[pos];
}
threadgroup T& operator [] (size_t pos) threadgroup
{
return elements[pos];
}
constexpr const threadgroup T& operator [] (size_t pos) const threadgroup
{
return elements[pos];
}
};
struct Alloc
{
uint offset;
};
struct CmdStrokeRef
{
uint offset;
};
struct CmdStroke
{
uint tile_ref;
float half_width;
};
struct CmdFillRef
{
uint offset;
};
struct CmdFill
{
uint tile_ref;
int backdrop;
};
struct CmdColorRef
{
uint offset;
};
struct CmdColor
{
uint rgba_color;
};
struct CmdLinGradRef
{
uint offset;
};
struct CmdLinGrad
{
uint index;
float line_x;
float line_y;
float line_c;
};
struct CmdImageRef
{
uint offset;
};
struct CmdImage
{
uint index;
int2 offset;
};
struct CmdAlphaRef
{
uint offset;
};
struct CmdAlpha
{
float alpha;
};
struct CmdJumpRef
{
uint offset;
};
struct CmdJump
{
uint new_ref;
};
struct CmdRef
{
uint offset;
};
struct CmdTag
{
uint tag;
uint flags;
};
struct TileSegRef
{
uint offset;
};
struct TileSeg
{
float2 origin;
float2 vector;
float y_edge;
TileSegRef next;
};
struct Memory
{
uint mem_offset;
uint mem_error;
uint memory[1];
};
struct Alloc_1
{
uint offset;
};
struct Config
{
uint n_elements;
uint n_pathseg;
uint width_in_tiles;
uint height_in_tiles;
Alloc_1 tile_alloc;
Alloc_1 bin_alloc;
Alloc_1 ptcl_alloc;
Alloc_1 pathseg_alloc;
Alloc_1 anno_alloc;
Alloc_1 trans_alloc;
Alloc_1 bbox_alloc;
Alloc_1 drawmonoid_alloc;
Alloc_1 clip_alloc;
Alloc_1 clip_bic_alloc;
Alloc_1 clip_stack_alloc;
Alloc_1 clip_bbox_alloc;
uint n_trans;
uint n_path;
uint n_clip;
uint trans_offset;
uint linewidth_offset;
uint pathtag_offset;
uint pathseg_offset;
};
struct ConfigBuf
{
Config conf;
};
constant uint3 gl_WorkGroupSize [[maybe_unused]] = uint3(8u, 4u, 1u);
static inline __attribute__((always_inline))
Alloc slice_mem(thread const Alloc& a, thread const uint& offset, thread const uint& size)
{
return Alloc{ a.offset + offset };
}
static inline __attribute__((always_inline))
bool touch_mem(thread const Alloc& alloc, thread const uint& offset)
{
return true;
}
static inline __attribute__((always_inline))
uint read_mem(thread const Alloc& alloc, thread const uint& offset, device Memory& v_202)
{
Alloc param = alloc;
uint param_1 = offset;
if (!touch_mem(param, param_1))
{
return 0u;
}
uint v = v_202.memory[offset];
return v;
}
static inline __attribute__((always_inline))
CmdTag Cmd_tag(thread const Alloc& a, thread const CmdRef& ref, device Memory& v_202)
{
Alloc param = a;
uint param_1 = ref.offset >> uint(2);
uint tag_and_flags = read_mem(param, param_1, v_202);
return CmdTag{ tag_and_flags & 65535u, tag_and_flags >> uint(16) };
}
static inline __attribute__((always_inline))
CmdStroke CmdStroke_read(thread const Alloc& a, thread const CmdStrokeRef& ref, device Memory& v_202)
{
uint ix = ref.offset >> uint(2);
Alloc param = a;
uint param_1 = ix + 0u;
uint raw0 = read_mem(param, param_1, v_202);
Alloc param_2 = a;
uint param_3 = ix + 1u;
uint raw1 = read_mem(param_2, param_3, v_202);
CmdStroke s;
s.tile_ref = raw0;
s.half_width = as_type<float>(raw1);
return s;
}
static inline __attribute__((always_inline))
CmdStroke Cmd_Stroke_read(thread const Alloc& a, thread const CmdRef& ref, device Memory& v_202)
{
Alloc param = a;
CmdStrokeRef param_1 = CmdStrokeRef{ ref.offset + 4u };
return CmdStroke_read(param, param_1, v_202);
}
static inline __attribute__((always_inline))
Alloc new_alloc(thread const uint& offset, thread const uint& size, thread const bool& mem_ok)
{
Alloc a;
a.offset = offset;
return a;
}
static inline __attribute__((always_inline))
TileSeg TileSeg_read(thread const Alloc& a, thread const TileSegRef& ref, device Memory& v_202)
{
uint ix = ref.offset >> uint(2);
Alloc param = a;
uint param_1 = ix + 0u;
uint raw0 = read_mem(param, param_1, v_202);
Alloc param_2 = a;
uint param_3 = ix + 1u;
uint raw1 = read_mem(param_2, param_3, v_202);
Alloc param_4 = a;
uint param_5 = ix + 2u;
uint raw2 = read_mem(param_4, param_5, v_202);
Alloc param_6 = a;
uint param_7 = ix + 3u;
uint raw3 = read_mem(param_6, param_7, v_202);
Alloc param_8 = a;
uint param_9 = ix + 4u;
uint raw4 = read_mem(param_8, param_9, v_202);
Alloc param_10 = a;
uint param_11 = ix + 5u;
uint raw5 = read_mem(param_10, param_11, v_202);
TileSeg s;
s.origin = float2(as_type<float>(raw0), as_type<float>(raw1));
s.vector = float2(as_type<float>(raw2), as_type<float>(raw3));
s.y_edge = as_type<float>(raw4);
s.next = TileSegRef{ raw5 };
return s;
}
static inline __attribute__((always_inline))
uint2 chunk_offset(thread const uint& i)
{
return uint2((i % 2u) * 8u, (i / 2u) * 4u);
}
static inline __attribute__((always_inline))
CmdFill CmdFill_read(thread const Alloc& a, thread const CmdFillRef& ref, device Memory& v_202)
{
uint ix = ref.offset >> uint(2);
Alloc param = a;
uint param_1 = ix + 0u;
uint raw0 = read_mem(param, param_1, v_202);
Alloc param_2 = a;
uint param_3 = ix + 1u;
uint raw1 = read_mem(param_2, param_3, v_202);
CmdFill s;
s.tile_ref = raw0;
s.backdrop = int(raw1);
return s;
}
static inline __attribute__((always_inline))
CmdFill Cmd_Fill_read(thread const Alloc& a, thread const CmdRef& ref, device Memory& v_202)
{
Alloc param = a;
CmdFillRef param_1 = CmdFillRef{ ref.offset + 4u };
return CmdFill_read(param, param_1, v_202);
}
static inline __attribute__((always_inline))
CmdAlpha CmdAlpha_read(thread const Alloc& a, thread const CmdAlphaRef& ref, device Memory& v_202)
{
uint ix = ref.offset >> uint(2);
Alloc param = a;
uint param_1 = ix + 0u;
uint raw0 = read_mem(param, param_1, v_202);
CmdAlpha s;
s.alpha = as_type<float>(raw0);
return s;
}
static inline __attribute__((always_inline))
CmdAlpha Cmd_Alpha_read(thread const Alloc& a, thread const CmdRef& ref, device Memory& v_202)
{
Alloc param = a;
CmdAlphaRef param_1 = CmdAlphaRef{ ref.offset + 4u };
return CmdAlpha_read(param, param_1, v_202);
}
static inline __attribute__((always_inline))
CmdColor CmdColor_read(thread const Alloc& a, thread const CmdColorRef& ref, device Memory& v_202)
{
uint ix = ref.offset >> uint(2);
Alloc param = a;
uint param_1 = ix + 0u;
uint raw0 = read_mem(param, param_1, v_202);
CmdColor s;
s.rgba_color = raw0;
return s;
}
static inline __attribute__((always_inline))
CmdColor Cmd_Color_read(thread const Alloc& a, thread const CmdRef& ref, device Memory& v_202)
{
Alloc param = a;
CmdColorRef param_1 = CmdColorRef{ ref.offset + 4u };
return CmdColor_read(param, param_1, v_202);
}
static inline __attribute__((always_inline))
float3 fromsRGB(thread const float3& srgb)
{
bool3 cutoff = srgb >= float3(0.040449999272823333740234375);
float3 below = srgb / float3(12.9200000762939453125);
float3 above = pow((srgb + float3(0.054999999701976776123046875)) / float3(1.05499994754791259765625), float3(2.400000095367431640625));
return select(below, above, cutoff);
}
static inline __attribute__((always_inline))
float4 unpacksRGB(thread const uint& srgba)
{
float4 color = unpack_unorm4x8_to_float(srgba).wzyx;
float3 param = color.xyz;
return float4(fromsRGB(param), color.w);
}
static inline __attribute__((always_inline))
CmdLinGrad CmdLinGrad_read(thread const Alloc& a, thread const CmdLinGradRef& ref, device Memory& v_202)
{
uint ix = ref.offset >> uint(2);
Alloc param = a;
uint param_1 = ix + 0u;
uint raw0 = read_mem(param, param_1, v_202);
Alloc param_2 = a;
uint param_3 = ix + 1u;
uint raw1 = read_mem(param_2, param_3, v_202);
Alloc param_4 = a;
uint param_5 = ix + 2u;
uint raw2 = read_mem(param_4, param_5, v_202);
Alloc param_6 = a;
uint param_7 = ix + 3u;
uint raw3 = read_mem(param_6, param_7, v_202);
CmdLinGrad s;
s.index = raw0;
s.line_x = as_type<float>(raw1);
s.line_y = as_type<float>(raw2);
s.line_c = as_type<float>(raw3);
return s;
}
static inline __attribute__((always_inline))
CmdLinGrad Cmd_LinGrad_read(thread const Alloc& a, thread const CmdRef& ref, device Memory& v_202)
{
Alloc param = a;
CmdLinGradRef param_1 = CmdLinGradRef{ ref.offset + 4u };
return CmdLinGrad_read(param, param_1, v_202);
}
static inline __attribute__((always_inline))
CmdImage CmdImage_read(thread const Alloc& a, thread const CmdImageRef& ref, device Memory& v_202)
{
uint ix = ref.offset >> uint(2);
Alloc param = a;
uint param_1 = ix + 0u;
uint raw0 = read_mem(param, param_1, v_202);
Alloc param_2 = a;
uint param_3 = ix + 1u;
uint raw1 = read_mem(param_2, param_3, v_202);
CmdImage s;
s.index = raw0;
s.offset = int2(int(raw1 << uint(16)) >> 16, int(raw1) >> 16);
return s;
}
static inline __attribute__((always_inline))
CmdImage Cmd_Image_read(thread const Alloc& a, thread const CmdRef& ref, device Memory& v_202)
{
Alloc param = a;
CmdImageRef param_1 = CmdImageRef{ ref.offset + 4u };
return CmdImage_read(param, param_1, v_202);
}
static inline __attribute__((always_inline))
spvUnsafeArray<float4, 8> fillImage(thread const uint2& xy, thread const CmdImage& cmd_img, thread texture2d<float> image_atlas)
{
spvUnsafeArray<float4, 8> rgba;
for (uint i = 0u; i < 8u; i++)
{
uint param = i;
int2 uv = int2(xy + chunk_offset(param)) + cmd_img.offset;
float4 fg_rgba = image_atlas.read(uint2(uv));
float3 param_1 = fg_rgba.xyz;
float3 _695 = fromsRGB(param_1);
fg_rgba.x = _695.x;
fg_rgba.y = _695.y;
fg_rgba.z = _695.z;
rgba[i] = fg_rgba;
}
return rgba;
}
static inline __attribute__((always_inline))
float3 tosRGB(thread const float3& rgb)
{
bool3 cutoff = rgb >= float3(0.003130800090730190277099609375);
float3 below = float3(12.9200000762939453125) * rgb;
float3 above = (float3(1.05499994754791259765625) * pow(rgb, float3(0.416660010814666748046875))) - float3(0.054999999701976776123046875);
return select(below, above, cutoff);
}
static inline __attribute__((always_inline))
uint packsRGB(thread float4& rgba)
{
float3 param = rgba.xyz;
rgba = float4(tosRGB(param), rgba.w);
return pack_float_to_unorm4x8(rgba.wzyx);
}
static inline __attribute__((always_inline))
CmdJump CmdJump_read(thread const Alloc& a, thread const CmdJumpRef& ref, device Memory& v_202)
{
uint ix = ref.offset >> uint(2);
Alloc param = a;
uint param_1 = ix + 0u;
uint raw0 = read_mem(param, param_1, v_202);
CmdJump s;
s.new_ref = raw0;
return s;
}
static inline __attribute__((always_inline))
CmdJump Cmd_Jump_read(thread const Alloc& a, thread const CmdRef& ref, device Memory& v_202)
{
Alloc param = a;
CmdJumpRef param_1 = CmdJumpRef{ ref.offset + 4u };
return CmdJump_read(param, param_1, v_202);
}
kernel void main0(device Memory& v_202 [[buffer(0)]], const device ConfigBuf& _723 [[buffer(1)]], texture2d<float, access::write> image [[texture(2)]], texture2d<float> image_atlas [[texture(3)]], texture2d<float> gradients [[texture(4)]], uint3 gl_WorkGroupID [[threadgroup_position_in_grid]], uint3 gl_LocalInvocationID [[thread_position_in_threadgroup]])
{
uint tile_ix = (gl_WorkGroupID.y * _723.conf.width_in_tiles) + gl_WorkGroupID.x;
Alloc param;
param.offset = _723.conf.ptcl_alloc.offset;
uint param_1 = tile_ix * 1024u;
uint param_2 = 1024u;
Alloc cmd_alloc = slice_mem(param, param_1, param_2);
CmdRef cmd_ref = CmdRef{ cmd_alloc.offset };
uint2 xy_uint = uint2(gl_LocalInvocationID.x + (16u * gl_WorkGroupID.x), gl_LocalInvocationID.y + (16u * gl_WorkGroupID.y));
float2 xy = float2(xy_uint);
spvUnsafeArray<float4, 8> rgba;
for (uint i = 0u; i < 8u; i++)
{
rgba[i] = float4(0.0);
}
uint clip_depth = 0u;
bool mem_ok = v_202.mem_error == 0u;
spvUnsafeArray<float, 8> df;
TileSegRef tile_seg_ref;
spvUnsafeArray<float, 8> area;
spvUnsafeArray<spvUnsafeArray<uint, 8>, 128> blend_stack;
while (mem_ok)
{
Alloc param_3 = cmd_alloc;
CmdRef param_4 = cmd_ref;
uint tag = Cmd_tag(param_3, param_4, v_202).tag;
if (tag == 0u)
{
break;
}
switch (tag)
{
case 2u:
{
Alloc param_5 = cmd_alloc;
CmdRef param_6 = cmd_ref;
CmdStroke stroke = Cmd_Stroke_read(param_5, param_6, v_202);
for (uint k = 0u; k < 8u; k++)
{
df[k] = 1000000000.0;
}
tile_seg_ref = TileSegRef{ stroke.tile_ref };
do
{
uint param_7 = tile_seg_ref.offset;
uint param_8 = 24u;
bool param_9 = mem_ok;
Alloc param_10 = new_alloc(param_7, param_8, param_9);
TileSegRef param_11 = tile_seg_ref;
TileSeg seg = TileSeg_read(param_10, param_11, v_202);
float2 line_vec = seg.vector;
for (uint k_1 = 0u; k_1 < 8u; k_1++)
{
float2 dpos = (xy + float2(0.5)) - seg.origin;
uint param_12 = k_1;
dpos += float2(chunk_offset(param_12));
float t = fast::clamp(dot(line_vec, dpos) / dot(line_vec, line_vec), 0.0, 1.0);
df[k_1] = fast::min(df[k_1], length((line_vec * t) - dpos));
}
tile_seg_ref = seg.next;
} while (tile_seg_ref.offset != 0u);
for (uint k_2 = 0u; k_2 < 8u; k_2++)
{
area[k_2] = fast::clamp((stroke.half_width + 0.5) - df[k_2], 0.0, 1.0);
}
cmd_ref.offset += 12u;
break;
}
case 1u:
{
Alloc param_13 = cmd_alloc;
CmdRef param_14 = cmd_ref;
CmdFill fill = Cmd_Fill_read(param_13, param_14, v_202);
for (uint k_3 = 0u; k_3 < 8u; k_3++)
{
area[k_3] = float(fill.backdrop);
}
tile_seg_ref = TileSegRef{ fill.tile_ref };
do
{
uint param_15 = tile_seg_ref.offset;
uint param_16 = 24u;
bool param_17 = mem_ok;
Alloc param_18 = new_alloc(param_15, param_16, param_17);
TileSegRef param_19 = tile_seg_ref;
TileSeg seg_1 = TileSeg_read(param_18, param_19, v_202);
for (uint k_4 = 0u; k_4 < 8u; k_4++)
{
uint param_20 = k_4;
float2 my_xy = xy + float2(chunk_offset(param_20));
float2 start = seg_1.origin - my_xy;
float2 end = start + seg_1.vector;
float2 window = fast::clamp(float2(start.y, end.y), float2(0.0), float2(1.0));
if ((isunordered(window.x, window.y) || window.x != window.y))
{
float2 t_1 = (window - float2(start.y)) / float2(seg_1.vector.y);
float2 xs = float2(mix(start.x, end.x, t_1.x), mix(start.x, end.x, t_1.y));
float xmin = fast::min(fast::min(xs.x, xs.y), 1.0) - 9.9999999747524270787835121154785e-07;
float xmax = fast::max(xs.x, xs.y);
float b = fast::min(xmax, 1.0);
float c = fast::max(b, 0.0);
float d = fast::max(xmin, 0.0);
float a = ((b + (0.5 * ((d * d) - (c * c)))) - xmin) / (xmax - xmin);
area[k_4] += (a * (window.x - window.y));
}
area[k_4] += (sign(seg_1.vector.x) * fast::clamp((my_xy.y - seg_1.y_edge) + 1.0, 0.0, 1.0));
}
tile_seg_ref = seg_1.next;
} while (tile_seg_ref.offset != 0u);
for (uint k_5 = 0u; k_5 < 8u; k_5++)
{
area[k_5] = fast::min(abs(area[k_5]), 1.0);
}
cmd_ref.offset += 12u;
break;
}
case 3u:
{
for (uint k_6 = 0u; k_6 < 8u; k_6++)
{
area[k_6] = 1.0;
}
cmd_ref.offset += 4u;
break;
}
case 4u:
{
Alloc param_21 = cmd_alloc;
CmdRef param_22 = cmd_ref;
CmdAlpha alpha = Cmd_Alpha_read(param_21, param_22, v_202);
for (uint k_7 = 0u; k_7 < 8u; k_7++)
{
area[k_7] = alpha.alpha;
}
cmd_ref.offset += 8u;
break;
}
case 5u:
{
Alloc param_23 = cmd_alloc;
CmdRef param_24 = cmd_ref;
CmdColor color = Cmd_Color_read(param_23, param_24, v_202);
uint param_25 = color.rgba_color;
float4 fg = unpacksRGB(param_25);
for (uint k_8 = 0u; k_8 < 8u; k_8++)
{
float4 fg_k = fg * area[k_8];
rgba[k_8] = (rgba[k_8] * (1.0 - fg_k.w)) + fg_k;
}
cmd_ref.offset += 8u;
break;
}
case 6u:
{
Alloc param_26 = cmd_alloc;
CmdRef param_27 = cmd_ref;
CmdLinGrad lin = Cmd_LinGrad_read(param_26, param_27, v_202);
float d_1 = ((lin.line_x * xy.x) + (lin.line_y * xy.y)) + lin.line_c;
for (uint k_9 = 0u; k_9 < 8u; k_9++)
{
uint param_28 = k_9;
float2 chunk_xy = float2(chunk_offset(param_28));
float my_d = (d_1 + (lin.line_x * chunk_xy.x)) + (lin.line_y * chunk_xy.y);
int x = int(round(fast::clamp(my_d, 0.0, 1.0) * 511.0));
float4 fg_rgba = gradients.read(uint2(int2(x, int(lin.index))));
float3 param_29 = fg_rgba.xyz;
float3 _1298 = fromsRGB(param_29);
fg_rgba.x = _1298.x;
fg_rgba.y = _1298.y;
fg_rgba.z = _1298.z;
rgba[k_9] = fg_rgba;
}
cmd_ref.offset += 20u;
break;
}
case 7u:
{
Alloc param_30 = cmd_alloc;
CmdRef param_31 = cmd_ref;
CmdImage fill_img = Cmd_Image_read(param_30, param_31, v_202);
uint2 param_32 = xy_uint;
CmdImage param_33 = fill_img;
spvUnsafeArray<float4, 8> img;
img = fillImage(param_32, param_33, image_atlas);
for (uint k_10 = 0u; k_10 < 8u; k_10++)
{
float4 fg_k_1 = img[k_10] * area[k_10];
rgba[k_10] = (rgba[k_10] * (1.0 - fg_k_1.w)) + fg_k_1;
}
cmd_ref.offset += 12u;
break;
}
case 8u:
{
for (uint k_11 = 0u; k_11 < 8u; k_11++)
{
uint d_2 = min(clip_depth, 127u);
float4 param_34 = float4(rgba[k_11]);
uint _1390 = packsRGB(param_34);
blend_stack[d_2][k_11] = _1390;
rgba[k_11] = float4(0.0);
}
clip_depth++;
cmd_ref.offset += 4u;
break;
}
case 9u:
{
clip_depth--;
for (uint k_12 = 0u; k_12 < 8u; k_12++)
{
uint d_3 = min(clip_depth, 127u);
uint param_35 = blend_stack[d_3][k_12];
float4 bg = unpacksRGB(param_35);
float4 fg_1 = rgba[k_12] * area[k_12];
rgba[k_12] = (bg * (1.0 - fg_1.w)) + fg_1;
}
cmd_ref.offset += 4u;
break;
}
case 10u:
{
Alloc param_36 = cmd_alloc;
CmdRef param_37 = cmd_ref;
cmd_ref = CmdRef{ Cmd_Jump_read(param_36, param_37, v_202).new_ref };
cmd_alloc.offset = cmd_ref.offset;
break;
}
}
}
for (uint i_1 = 0u; i_1 < 8u; i_1++)
{
uint param_38 = i_1;
image.write(float4(rgba[i_1].w), uint2(int2(xy_uint + chunk_offset(param_38))));
}
}