vello/piet-gpu/shader/binning.comp
Elias Naur df055563bd collapse annotated Fill and Stroke to Color with fill mode flag
No functionality changes, just different encoding.

Updates #70

Signed-off-by: Elias Naur <mail@eliasnaur.com>
2021-03-19 12:50:12 +01:00

152 lines
5 KiB
Plaintext

// SPDX-License-Identifier: Apache-2.0 OR MIT OR Unlicense
// The binning stage of the pipeline.
//
// Each workgroup processes N_TILE paths.
// Each thread processes one path and calculates a N_TILE_X x N_TILE_Y coverage mask
// based on the path bounding box to bin the paths.
#version 450
#extension GL_GOOGLE_include_directive : enable
#include "mem.h"
#include "setup.h"
layout(local_size_x = N_TILE, local_size_y = 1) in;
layout(set = 0, binding = 1) readonly buffer ConfigBuf {
Config conf;
};
#include "annotated.h"
#include "bins.h"
// scale factors useful for converting coordinates to bins
#define SX (1.0 / float(N_TILE_X * TILE_WIDTH_PX))
#define SY (1.0 / float(N_TILE_Y * TILE_HEIGHT_PX))
// Constant not available in GLSL. Also consider uintBitsToFloat(0x7f800000)
#define INFINITY (1.0 / 0.0)
// Note: cudaraster has N_TILE + 1 to cut down on bank conflicts.
// Bitmaps are sliced (256bit into 8 (N_SLICE) 32bit submaps)
shared uint bitmaps[N_SLICE][N_TILE];
shared uint count[N_SLICE][N_TILE];
shared Alloc sh_chunk_alloc[N_TILE];
shared bool sh_alloc_failed;
void main() {
if (mem_error != NO_ERROR) {
return;
}
uint my_n_elements = conf.n_elements;
uint my_partition = gl_WorkGroupID.x;
for (uint i = 0; i < N_SLICE; i++) {
bitmaps[i][gl_LocalInvocationID.x] = 0;
}
if (gl_LocalInvocationID.x == 0) {
sh_alloc_failed = false;
}
barrier();
// Read inputs and determine coverage of bins
uint element_ix = my_partition * N_TILE + gl_LocalInvocationID.x;
AnnotatedRef ref = AnnotatedRef(conf.anno_alloc.offset + element_ix * Annotated_size);
uint tag = Annotated_Nop;
if (element_ix < my_n_elements) {
tag = Annotated_tag(conf.anno_alloc, ref).tag;
}
int x0 = 0, y0 = 0, x1 = 0, y1 = 0;
switch (tag) {
case Annotated_Color:
case Annotated_FillImage:
case Annotated_BeginClip:
case Annotated_EndClip:
// Note: we take advantage of the fact that these drawing elements
// have the bbox at the same place in their layout.
AnnoClip clip = Annotated_BeginClip_read(conf.anno_alloc, ref);
x0 = int(floor(clip.bbox.x * SX));
y0 = int(floor(clip.bbox.y * SY));
x1 = int(ceil(clip.bbox.z * SX));
y1 = int(ceil(clip.bbox.w * SY));
break;
}
// At this point, we run an iterator over the coverage area,
// trying to keep divergence low.
// Right now, it's just a bbox, but we'll get finer with
// segments.
uint width_in_bins = (conf.width_in_tiles + N_TILE_X - 1)/N_TILE_X;
uint height_in_bins = (conf.height_in_tiles + N_TILE_Y - 1)/N_TILE_Y;
x0 = clamp(x0, 0, int(width_in_bins));
x1 = clamp(x1, x0, int(width_in_bins));
y0 = clamp(y0, 0, int(height_in_bins));
y1 = clamp(y1, y0, int(height_in_bins));
if (x0 == x1) y1 = y0;
int x = x0, y = y0;
uint my_slice = gl_LocalInvocationID.x / 32;
uint my_mask = 1 << (gl_LocalInvocationID.x & 31);
while (y < y1) {
atomicOr(bitmaps[my_slice][y * width_in_bins + x], my_mask);
x++;
if (x == x1) {
x = x0;
y++;
}
}
barrier();
// Allocate output segments.
uint element_count = 0;
for (uint i = 0; i < N_SLICE; i++) {
element_count += bitCount(bitmaps[i][gl_LocalInvocationID.x]);
count[i][gl_LocalInvocationID.x] = element_count;
}
// element_count is number of elements covering bin for this invocation.
Alloc chunk_alloc = new_alloc(0, 0);
if (element_count != 0) {
// TODO: aggregate atomic adds (subgroup is probably fastest)
MallocResult chunk = malloc(element_count * BinInstance_size);
chunk_alloc = chunk.alloc;
sh_chunk_alloc[gl_LocalInvocationID.x] = chunk_alloc;
if (chunk.failed) {
sh_alloc_failed = true;
}
}
// Note: it might be more efficient for reading to do this in the
// other order (each bin is a contiguous sequence of partitions)
uint out_ix = (conf.bin_alloc.offset >> 2) + (my_partition * N_TILE + gl_LocalInvocationID.x) * 2;
write_mem(conf.bin_alloc, out_ix, element_count);
write_mem(conf.bin_alloc, out_ix + 1, chunk_alloc.offset);
barrier();
if (sh_alloc_failed) {
return;
}
// Use similar strategy as Laine & Karras paper; loop over bbox of bins
// touched by this element
x = x0;
y = y0;
while (y < y1) {
uint bin_ix = y * width_in_bins + x;
uint out_mask = bitmaps[my_slice][bin_ix];
if ((out_mask & my_mask) != 0) {
uint idx = bitCount(out_mask & (my_mask - 1));
if (my_slice > 0) {
idx += count[my_slice - 1][bin_ix];
}
Alloc out_alloc = sh_chunk_alloc[bin_ix];
uint out_offset = out_alloc.offset + idx * BinInstance_size;
BinInstance_write(out_alloc, BinInstanceRef(out_offset), BinInstance(element_ix));
}
x++;
if (x == x1) {
x = x0;
y++;
}
}
}