winit-sonoma-fix/src/api/x11/input.rs

364 lines
13 KiB
Rust
Raw Normal View History

use std::sync::Arc;
use libc;
use std::{mem, ptr};
use std::ffi::CString;
use std::slice::from_raw_parts;
use WindowAttributes;
use events::Event;
use super::{events, ffi};
use super::XConnection;
#[derive(Debug)]
enum AxisType {
HorizontalScroll,
VerticalScroll
}
#[derive(Debug)]
struct Axis {
id: i32,
device_id: i32,
axis_number: i32,
axis_type: AxisType,
scroll_increment: f64,
}
#[derive(Debug)]
struct AxisValue {
device_id: i32,
axis_number: i32,
value: f64
}
struct InputState {
/// Last-seen cursor position within a window in (x, y)
/// coordinates
cursor_pos: (f64, f64),
/// Last-seen positions of axes, used to report delta
/// movements when a new absolute axis value is received
axis_values: Vec<AxisValue>
}
pub struct XInputEventHandler {
display: Arc<XConnection>,
window: ffi::Window,
ic: ffi::XIC,
axis_list: Vec<Axis>,
current_state: InputState,
multitouch: bool,
}
impl XInputEventHandler {
pub fn new(display: &Arc<XConnection>, window: ffi::Window, ic: ffi::XIC,
window_attrs: &WindowAttributes) -> XInputEventHandler {
// query XInput support
let mut opcode: libc::c_int = 0;
let mut event: libc::c_int = 0;
let mut error: libc::c_int = 0;
let xinput_str = CString::new("XInputExtension").unwrap();
unsafe {
if (display.xlib.XQueryExtension)(display.display, xinput_str.as_ptr(), &mut opcode, &mut event, &mut error) == ffi::False {
panic!("XInput not available")
}
}
let mut xinput_major_ver = ffi::XI_2_Major;
let mut xinput_minor_ver = ffi::XI_2_Minor;
unsafe {
if (display.xinput2.XIQueryVersion)(display.display, &mut xinput_major_ver, &mut xinput_minor_ver) != ffi::Success as libc::c_int {
panic!("Unable to determine XInput version");
}
}
// specify the XInput events we want to receive.
// Button clicks and mouse events are handled via XInput
// events. Key presses are still handled via plain core
// X11 events.
2015-08-19 06:24:11 +10:00
let mut mask: [libc::c_uchar; 3] = [0; 3];
let mut input_event_mask = ffi::XIEventMask {
deviceid: ffi::XIAllMasterDevices,
mask_len: mask.len() as i32,
mask: mask.as_mut_ptr()
};
let events = &[
ffi::XI_ButtonPress,
ffi::XI_ButtonRelease,
ffi::XI_Motion,
ffi::XI_Enter,
ffi::XI_Leave,
ffi::XI_FocusIn,
2015-08-19 06:24:11 +10:00
ffi::XI_FocusOut,
ffi::XI_TouchBegin,
ffi::XI_TouchUpdate,
ffi::XI_TouchEnd,
];
for event in events {
ffi::XISetMask(&mut mask, *event);
}
unsafe {
match (display.xinput2.XISelectEvents)(display.display, window, &mut input_event_mask, 1) {
status if status as u8 == ffi::Success => (),
err => panic!("Failed to select events {:?}", err)
}
}
XInputEventHandler {
display: display.clone(),
window: window,
ic: ic,
axis_list: read_input_axis_info(display),
current_state: InputState {
cursor_pos: (0.0, 0.0),
axis_values: Vec::new()
},
multitouch: window_attrs.multitouch,
}
}
pub fn translate_key_event(&self, event: &mut ffi::XKeyEvent) -> Vec<Event> {
use events::Event::{KeyboardInput, ReceivedCharacter};
use events::ElementState::{Pressed, Released};
let mut translated_events = Vec::new();
let state;
if event.type_ == ffi::KeyPress {
let raw_ev: *mut ffi::XKeyEvent = event;
unsafe { (self.display.xlib.XFilterEvent)(mem::transmute(raw_ev), self.window) };
state = Pressed;
} else {
state = Released;
}
let mut kp_keysym = 0;
let written = unsafe {
use std::str;
let mut buffer: [u8; 16] = [mem::uninitialized(); 16];
let raw_ev: *mut ffi::XKeyEvent = event;
let count = (self.display.xlib.Xutf8LookupString)(self.ic, mem::transmute(raw_ev),
mem::transmute(buffer.as_mut_ptr()),
buffer.len() as libc::c_int, &mut kp_keysym, ptr::null_mut());
str::from_utf8(&buffer[..count as usize]).unwrap_or("").to_string()
};
for chr in written.chars() {
translated_events.push(ReceivedCharacter(chr));
}
let mut keysym = unsafe {
(self.display.xlib.XKeycodeToKeysym)(self.display.display, event.keycode as ffi::KeyCode, 0)
};
if (ffi::XK_KP_Space as libc::c_ulong <= keysym) && (keysym <= ffi::XK_KP_9 as libc::c_ulong) {
keysym = kp_keysym
};
let vkey = events::keycode_to_element(keysym as libc::c_uint);
translated_events.push(KeyboardInput(state, event.keycode as u8, vkey));
translated_events
}
pub fn translate_event(&mut self, cookie: &ffi::XGenericEventCookie) -> Option<Event> {
use events::Event::{Focused, MouseInput, MouseMoved, MouseWheel};
use events::ElementState::{Pressed, Released};
use events::MouseButton::{Left, Right, Middle};
use events::MouseScrollDelta::LineDelta;
2015-08-19 06:24:11 +10:00
use events::{Touch, TouchPhase};
match cookie.evtype {
ffi::XI_ButtonPress | ffi::XI_ButtonRelease => {
let event_data: &ffi::XIDeviceEvent = unsafe{mem::transmute(cookie.data)};
if self.multitouch && (event_data.flags & ffi::XIPointerEmulated) != 0 {
// Deliver multi-touch events instead of emulated mouse events.
return None
}
let state = if cookie.evtype == ffi::XI_ButtonPress {
Pressed
} else {
Released
};
match event_data.detail as u32 {
ffi::Button1 => Some(MouseInput(state, Left)),
ffi::Button2 => Some(MouseInput(state, Middle)),
ffi::Button3 => Some(MouseInput(state, Right)),
ffi::Button4 | ffi::Button5 => {
if event_data.flags & ffi::XIPointerEmulated == 0 {
// scroll event from a traditional wheel with
// distinct 'clicks'
let delta = if event_data.detail as u32 == ffi::Button4 {
1.0
} else {
-1.0
};
Some(MouseWheel(LineDelta(0.0, delta)))
} else {
// emulated button event from a touch/smooth-scroll
// event. Ignore these events and handle scrolling
// via XI_Motion event handler instead
None
}
}
_ => None
}
},
ffi::XI_Motion => {
let event_data: &ffi::XIDeviceEvent = unsafe{mem::transmute(cookie.data)};
if self.multitouch && (event_data.flags & ffi::XIPointerEmulated) != 0 {
// Deliver multi-touch events instead of emulated mouse events.
return None
}
let axis_state = event_data.valuators;
let mask = unsafe{ from_raw_parts(axis_state.mask, axis_state.mask_len as usize) };
let mut axis_count = 0;
let mut scroll_delta = (0.0, 0.0);
for axis_id in 0..axis_state.mask_len {
if ffi::XIMaskIsSet(&mask, axis_id) {
let axis_value = unsafe{*axis_state.values.offset(axis_count)};
let delta = calc_scroll_deltas(event_data, axis_id, axis_value, &self.axis_list,
&mut self.current_state.axis_values);
scroll_delta.0 += delta.0;
scroll_delta.1 += delta.1;
axis_count += 1;
}
}
if scroll_delta.0.abs() > 0.0 || scroll_delta.1.abs() > 0.0 {
Some(MouseWheel(LineDelta(scroll_delta.0 as f32, scroll_delta.1 as f32)))
} else {
let new_cursor_pos = (event_data.event_x, event_data.event_y);
if new_cursor_pos != self.current_state.cursor_pos {
self.current_state.cursor_pos = new_cursor_pos;
Some(MouseMoved((new_cursor_pos.0 as i32, new_cursor_pos.1 as i32)))
} else {
None
}
}
},
ffi::XI_Enter => {
// axis movements whilst the cursor is outside the window
// will alter the absolute value of the axes. We only want to
// report changes in the axis value whilst the cursor is above
// our window however, so clear the previous axis state whenever
// the cursor re-enters the window
self.current_state.axis_values.clear();
None
},
ffi::XI_Leave => None,
ffi::XI_FocusIn => Some(Focused(true)),
ffi::XI_FocusOut => Some(Focused(false)),
2015-08-19 06:24:11 +10:00
ffi::XI_TouchBegin | ffi::XI_TouchUpdate | ffi::XI_TouchEnd => {
if !self.multitouch {
return None
}
2015-08-19 06:24:11 +10:00
let event_data: &ffi::XIDeviceEvent = unsafe{mem::transmute(cookie.data)};
let phase = match cookie.evtype {
ffi::XI_TouchBegin => TouchPhase::Started,
ffi::XI_TouchUpdate => TouchPhase::Moved,
ffi::XI_TouchEnd => TouchPhase::Ended,
_ => unreachable!()
};
Some(Event::Touch(Touch {
phase: phase,
location: (event_data.event_x, event_data.event_y),
id: event_data.detail as u64,
}))
}
_ => None
}
}
}
fn read_input_axis_info(display: &Arc<XConnection>) -> Vec<Axis> {
let mut axis_list = Vec::new();
let mut device_count = 0;
// Check all input devices for scroll axes.
let devices = unsafe{
(display.xinput2.XIQueryDevice)(display.display, ffi::XIAllDevices, &mut device_count)
};
for i in 0..device_count {
let device = unsafe { *(devices.offset(i as isize)) };
for k in 0..device.num_classes {
let class = unsafe { *(device.classes.offset(k as isize)) };
match unsafe { (*class)._type } {
// Note that scroll axis
// are reported both as 'XIScrollClass' and 'XIValuatorClass'
// axes. For the moment we only care about scrolling axes.
ffi::XIScrollClass => {
let scroll_class: &ffi::XIScrollClassInfo = unsafe{mem::transmute(class)};
axis_list.push(Axis{
id: scroll_class.sourceid,
device_id: device.deviceid,
axis_number: scroll_class.number,
axis_type: match scroll_class.scroll_type {
ffi::XIScrollTypeHorizontal => AxisType::HorizontalScroll,
ffi::XIScrollTypeVertical => AxisType::VerticalScroll,
_ => { unreachable!() }
},
scroll_increment: scroll_class.increment,
})
},
_ => {}
}
}
}
axis_list
}
/// Given an input motion event for an axis and the previous
/// state of the axes, return the horizontal/vertical
/// scroll deltas
fn calc_scroll_deltas(event: &ffi::XIDeviceEvent,
axis_id: i32,
axis_value: f64,
axis_list: &[Axis],
prev_axis_values: &mut Vec<AxisValue>) -> (f64, f64) {
let prev_value_pos = prev_axis_values.iter().position(|prev_axis| {
prev_axis.device_id == event.sourceid &&
prev_axis.axis_number == axis_id
});
let delta = match prev_value_pos {
Some(idx) => prev_axis_values[idx].value - axis_value,
None => 0.0
};
let new_axis_value = AxisValue{
device_id: event.sourceid,
axis_number: axis_id,
value: axis_value
};
match prev_value_pos {
Some(idx) => prev_axis_values[idx] = new_axis_value,
None => prev_axis_values.push(new_axis_value)
}
let mut scroll_delta = (0.0, 0.0);
for axis in axis_list.iter() {
if axis.id == event.sourceid &&
axis.axis_number == axis_id {
match axis.axis_type {
AxisType::HorizontalScroll => scroll_delta.0 = delta / axis.scroll_increment,
AxisType::VerticalScroll => scroll_delta.1 = delta / axis.scroll_increment
}
}
}
scroll_delta
}