winit-sonoma-fix/src/dpi.rs

575 lines
19 KiB
Rust
Raw Normal View History

//! UI scaling is important, so read the docs for this module if you don't want to be confused.
2018-06-14 19:42:18 -04:00
//!
//! ## Why should I care about UI scaling?
2018-06-14 19:42:18 -04:00
//!
//! Modern computer screens don't have a consistent relationship between resolution and size.
//! 1920x1080 is a common resolution for both desktop and mobile screens, despite mobile screens
//! normally being less than a quarter the size of their desktop counterparts. What's more, neither
//! desktop nor mobile screens are consistent resolutions within their own size classes - common
//! mobile screens range from below 720p to above 1440p, and desktop screens range from 720p to 5K
//! and beyond.
2018-06-14 19:42:18 -04:00
//!
//! Given that, it's a mistake to assume that 2D content will only be displayed on screens with
//! a consistent pixel density. If you were to render a 96-pixel-square image on a 1080p screen,
//! then render the same image on a similarly-sized 4K screen, the 4K rendition would only take up
//! about a quarter of the physical space as it did on the 1080p screen. That issue is especially
//! problematic with text rendering, where quarter-sized text becomes a significant legibility
//! problem.
2018-06-14 19:42:18 -04:00
//!
//! Failure to account for the scale factor can create a significantly degraded user experience.
//! Most notably, it can make users feel like they have bad eyesight, which will potentially cause
//! them to think about growing elderly, resulting in them having an existential crisis. Once users
//! enter that state, they will no longer be focused on your application.
2018-06-14 19:42:18 -04:00
//!
//! ## How should I handle it?
2018-06-14 19:42:18 -04:00
//!
//! The solution to this problem is to account for the device's *scale factor*. The scale factor is
//! the factor UI elements should be scaled by to be consistent with the rest of the user's system -
//! for example, a button that's normally 50 pixels across would be 100 pixels across on a device
//! with a scale factor of `2.0`, or 75 pixels across with a scale factor of `1.5`.
2018-06-14 19:42:18 -04:00
//!
2020-01-05 16:34:37 -05:00
//! Many UI systems, such as CSS, expose DPI-dependent units like [points] or [picas]. That's
//! usually a mistake, since there's no consistent mapping between the scale factor and the screen's
//! actual DPI. Unless you're printing to a physical medium, you should work in scaled pixels rather
//! than any DPI-dependent units.
//!
//! ### Position and Size types
2018-06-14 19:42:18 -04:00
//!
//! Winit's `Physical(Position|Size)` types correspond with the actual pixels on the device, and the
//! `Logical(Position|Size)` types correspond to the physical pixels divided by the scale factor.
//! All of Winit's functions return physical types, but can take either logical or physical
//! coordinates as input, allowing you to use the most convenient coordinate system for your
//! particular application.
2018-06-14 19:42:18 -04:00
//!
//! Winit's position and size types types are generic over their exact pixel type, `P`, to allow the
//! API to have integer precision where appropriate (e.g. most window manipulation functions) and
//! floating precision when necessary (e.g. logical sizes for fractional scale factors and touch
//! input). If `P` is a floating-point type, please do not cast the values with `as {int}`. Doing so
//! will truncate the fractional part of the float, rather than properly round to the nearest
//! integer. Use the provided `cast` function or `From`/`Into` conversions, which handle the
//! rounding properly. Note that precision loss will still occur when rounding from a float to an
//! int, although rounding lessens the problem.
2018-06-14 19:42:18 -04:00
//!
//! ### Events
//!
2020-01-05 16:57:32 -05:00
//! Winit will dispatch a [`ScaleFactorChanged`](crate::event::WindowEvent::ScaleFactorChanged)
//! event whenever a window's scale factor has changed. This can happen if the user drags their
//! window from a standard-resolution monitor to a high-DPI monitor, or if the user changes their
//! DPI settings. This gives you a chance to rescale your application's UI elements and adjust how
//! the platform changes the window's size to reflect the new scale factor. If a window hasn't
2020-01-05 16:57:32 -05:00
//! received a [`ScaleFactorChanged`](crate::event::WindowEvent::ScaleFactorChanged) event,
//! then its scale factor can be found by calling [window.scale_factor()].
//!
//! ## How is the scale factor calculated?
//!
//! Scale factor is calculated differently on different platforms:
//!
//! - **Windows:** On Windows 8 and 10, per-monitor scaling is readily configured by users from the
//! display settings. While users are free to select any option they want, they're only given a
//! selection of "nice" scale factors, i.e. 1.0, 1.25, 1.5... on Windows 7, the scale factor is
//! global and changing it requires logging out. See [this article][windows_1] for technical
//! details.
//! - **macOS:** Recent versions of macOS allow the user to change the scaling factor for certain
//! displays. When this is available, the user may pick a per-monitor scaling factor from a set
//! of pre-defined settings. All "retina displays" have a scaling factor above 1.0 by default but
//! the specific value varies across devices.
//! - **X11:** Many man-hours have been spent trying to figure out how to handle DPI in X11. Winit
//! currently uses a three-pronged approach:
//! + Use the value in the `WINIT_X11_SCALE_FACTOR` environment variable, if present.
//! + If not present, use the value set in `Xft.dpi` in Xresources.
//! + Otherwise, calcuate the scale factor based on the millimeter monitor dimensions provided by XRandR.
//!
//! If `WINIT_X11_SCALE_FACTOR` is set to `randr`, it'll ignore the `Xft.dpi` field and use the
//! XRandR scaling method. Generally speaking, you should try to configure the standard system
//! variables to do what you want before resorting to `WINIT_X11_SCALE_FACTOR`.
//! - **Wayland:** On Wayland, scale factors are set per-screen by the server, and are always
//! integers (most often 1 or 2).
//! - **iOS:** Scale factors are set by Apple to the value that best suits the device, and range
//! from `1.0` to `3.0`. See [this article][apple_1] and [this article][apple_2] for more
//! information.
//! - **Android:** Scale factors are set by the manufacturer to the value that best suits the
//! device, and range from `1.0` to `4.0`. See [this article][android_1] for more information.
//! - **Web:** The scale factor is the ratio between CSS pixels and the physical device pixels.
//! In other words, it is the value of [`window.devicePixelRatio`][web_1]. It is affected by
//! both the screen scaling and the browser zoom level and can go below `1.0`.
//!
//! [points]: https://en.wikipedia.org/wiki/Point_(typography)
//! [picas]: https://en.wikipedia.org/wiki/Pica_(typography)
//! [window.scale_factor()]: crate::window::Window::scale_factor
//! [windows_1]: https://docs.microsoft.com/en-us/windows/win32/hidpi/high-dpi-desktop-application-development-on-windows
//! [apple_1]: https://developer.apple.com/library/archive/documentation/DeviceInformation/Reference/iOSDeviceCompatibility/Displays/Displays.html
//! [apple_2]: https://developer.apple.com/design/human-interface-guidelines/macos/icons-and-images/image-size-and-resolution/
//! [android_1]: https://developer.android.com/training/multiscreen/screendensities
//! [web_1]: https://developer.mozilla.org/en-US/docs/Web/API/Window/devicePixelRatio
2018-06-14 19:42:18 -04:00
pub trait Pixel: Copy + Into<f64> {
fn from_f64(f: f64) -> Self;
fn cast<P: Pixel>(self) -> P {
P::from_f64(self.into())
}
}
impl Pixel for u8 {
fn from_f64(f: f64) -> Self {
f.round() as u8
}
}
impl Pixel for u16 {
fn from_f64(f: f64) -> Self {
f.round() as u16
}
}
impl Pixel for u32 {
fn from_f64(f: f64) -> Self {
f.round() as u32
}
}
impl Pixel for i8 {
fn from_f64(f: f64) -> Self {
f.round() as i8
}
}
impl Pixel for i16 {
fn from_f64(f: f64) -> Self {
f.round() as i16
}
}
impl Pixel for i32 {
fn from_f64(f: f64) -> Self {
f.round() as i32
}
}
impl Pixel for f32 {
fn from_f64(f: f64) -> Self {
f as f32
}
}
impl Pixel for f64 {
fn from_f64(f: f64) -> Self {
f
}
}
/// Checks that the scale factor is a normal positive `f64`.
2018-06-14 19:42:18 -04:00
///
/// All functions that take a scale factor assert that this will return `true`. If you're sourcing scale factors from
2018-06-14 19:42:18 -04:00
/// anywhere other than winit, it's recommended to validate them using this function before passing them to winit;
/// otherwise, you risk panics.
#[inline]
pub fn validate_scale_factor(scale_factor: f64) -> bool {
scale_factor.is_sign_positive() && scale_factor.is_normal()
2018-06-14 19:42:18 -04:00
}
/// A position represented in logical pixels.
///
/// The position is stored as floats, so please be careful. Casting floats to integers truncates the
/// fractional part, which can cause noticable issues. To help with that, an `Into<(i32, i32)>`
/// implementation is provided which does the rounding for you.
#[derive(Debug, Copy, Clone, Eq, PartialEq, Default, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct LogicalPosition<P> {
pub x: P,
pub y: P,
2018-06-14 19:42:18 -04:00
}
impl<P> LogicalPosition<P> {
2018-06-14 19:42:18 -04:00
#[inline]
pub const fn new(x: P, y: P) -> Self {
2018-06-14 19:42:18 -04:00
LogicalPosition { x, y }
}
}
2018-06-14 19:42:18 -04:00
impl<P: Pixel> LogicalPosition<P> {
2018-06-14 19:42:18 -04:00
#[inline]
pub fn from_physical<T: Into<PhysicalPosition<X>>, X: Pixel>(
physical: T,
scale_factor: f64,
) -> Self {
physical.into().to_logical(scale_factor)
2018-06-14 19:42:18 -04:00
}
#[inline]
pub fn to_physical<X: Pixel>(&self, scale_factor: f64) -> PhysicalPosition<X> {
assert!(validate_scale_factor(scale_factor));
let x = self.x.into() * scale_factor;
let y = self.y.into() * scale_factor;
PhysicalPosition::new(x, y).cast()
2018-06-14 19:42:18 -04:00
}
#[inline]
pub fn cast<X: Pixel>(&self) -> LogicalPosition<X> {
LogicalPosition {
x: self.x.cast(),
y: self.y.cast(),
}
2018-06-14 19:42:18 -04:00
}
}
impl<P: Pixel, X: Pixel> From<(X, X)> for LogicalPosition<P> {
fn from((x, y): (X, X)) -> LogicalPosition<P> {
LogicalPosition::new(x.cast(), y.cast())
2018-06-14 19:42:18 -04:00
}
}
impl<P: Pixel, X: Pixel> Into<(X, X)> for LogicalPosition<P> {
fn into(self: Self) -> (X, X) {
(self.x.cast(), self.y.cast())
2018-06-14 19:42:18 -04:00
}
}
impl<P: Pixel, X: Pixel> From<[X; 2]> for LogicalPosition<P> {
fn from([x, y]: [X; 2]) -> LogicalPosition<P> {
LogicalPosition::new(x.cast(), y.cast())
}
}
impl<P: Pixel, X: Pixel> Into<[X; 2]> for LogicalPosition<P> {
fn into(self: Self) -> [X; 2] {
[self.x.cast(), self.y.cast()]
}
}
#[cfg(feature = "mint")]
impl<P: Pixel> From<mint::Point2<P>> for LogicalPosition<P> {
fn from(mint: mint::Point2<P>) -> Self {
Self::new(mint.x, mint.y)
}
}
#[cfg(feature = "mint")]
impl<P: Pixel> From<LogicalPosition<P>> for mint::Point2<P> {
fn from(winit: LogicalPosition<P>) -> Self {
mint::Point2 {
x: winit.x,
y: winit.y,
}
}
}
2018-06-14 19:42:18 -04:00
/// A position represented in physical pixels.
#[derive(Debug, Copy, Clone, Eq, PartialEq, Default, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct PhysicalPosition<P> {
pub x: P,
pub y: P,
2018-06-14 19:42:18 -04:00
}
impl<P> PhysicalPosition<P> {
2018-06-14 19:42:18 -04:00
#[inline]
pub const fn new(x: P, y: P) -> Self {
2018-06-14 19:42:18 -04:00
PhysicalPosition { x, y }
}
}
2018-06-14 19:42:18 -04:00
impl<P: Pixel> PhysicalPosition<P> {
2018-06-14 19:42:18 -04:00
#[inline]
pub fn from_logical<T: Into<LogicalPosition<X>>, X: Pixel>(
logical: T,
scale_factor: f64,
) -> Self {
logical.into().to_physical(scale_factor)
2018-06-14 19:42:18 -04:00
}
#[inline]
pub fn to_logical<X: Pixel>(&self, scale_factor: f64) -> LogicalPosition<X> {
assert!(validate_scale_factor(scale_factor));
let x = self.x.into() / scale_factor;
let y = self.y.into() / scale_factor;
LogicalPosition::new(x, y).cast()
2018-06-14 19:42:18 -04:00
}
#[inline]
pub fn cast<X: Pixel>(&self) -> PhysicalPosition<X> {
PhysicalPosition {
x: self.x.cast(),
y: self.y.cast(),
}
2018-06-14 19:42:18 -04:00
}
}
impl<P: Pixel, X: Pixel> From<(X, X)> for PhysicalPosition<P> {
fn from((x, y): (X, X)) -> PhysicalPosition<P> {
PhysicalPosition::new(x.cast(), y.cast())
2018-06-14 19:42:18 -04:00
}
}
impl<P: Pixel, X: Pixel> Into<(X, X)> for PhysicalPosition<P> {
fn into(self: Self) -> (X, X) {
(self.x.cast(), self.y.cast())
2018-06-14 19:42:18 -04:00
}
}
impl<P: Pixel, X: Pixel> From<[X; 2]> for PhysicalPosition<P> {
fn from([x, y]: [X; 2]) -> PhysicalPosition<P> {
PhysicalPosition::new(x.cast(), y.cast())
}
}
impl<P: Pixel, X: Pixel> Into<[X; 2]> for PhysicalPosition<P> {
fn into(self: Self) -> [X; 2] {
[self.x.cast(), self.y.cast()]
}
}
#[cfg(feature = "mint")]
impl<P: Pixel> From<mint::Point2<P>> for PhysicalPosition<P> {
fn from(mint: mint::Point2<P>) -> Self {
Self::new(mint.x, mint.y)
}
}
#[cfg(feature = "mint")]
impl<P: Pixel> From<PhysicalPosition<P>> for mint::Point2<P> {
fn from(winit: PhysicalPosition<P>) -> Self {
mint::Point2 {
x: winit.x,
y: winit.y,
}
}
}
2018-06-14 19:42:18 -04:00
/// A size represented in logical pixels.
#[derive(Debug, Copy, Clone, Eq, PartialEq, Default, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct LogicalSize<P> {
pub width: P,
pub height: P,
2018-06-14 19:42:18 -04:00
}
impl<P> LogicalSize<P> {
2018-06-14 19:42:18 -04:00
#[inline]
pub const fn new(width: P, height: P) -> Self {
2018-06-14 19:42:18 -04:00
LogicalSize { width, height }
}
}
2018-06-14 19:42:18 -04:00
impl<P: Pixel> LogicalSize<P> {
2018-06-14 19:42:18 -04:00
#[inline]
pub fn from_physical<T: Into<PhysicalSize<X>>, X: Pixel>(
physical: T,
scale_factor: f64,
) -> Self {
physical.into().to_logical(scale_factor)
2018-06-14 19:42:18 -04:00
}
#[inline]
pub fn to_physical<X: Pixel>(&self, scale_factor: f64) -> PhysicalSize<X> {
assert!(validate_scale_factor(scale_factor));
let width = self.width.into() * scale_factor;
let height = self.height.into() * scale_factor;
PhysicalSize::new(width, height).cast()
2018-06-14 19:42:18 -04:00
}
#[inline]
pub fn cast<X: Pixel>(&self) -> LogicalSize<X> {
LogicalSize {
width: self.width.cast(),
height: self.height.cast(),
}
2018-06-14 19:42:18 -04:00
}
}
impl<P: Pixel, X: Pixel> From<(X, X)> for LogicalSize<P> {
fn from((x, y): (X, X)) -> LogicalSize<P> {
LogicalSize::new(x.cast(), y.cast())
2018-06-14 19:42:18 -04:00
}
}
impl<P: Pixel, X: Pixel> Into<(X, X)> for LogicalSize<P> {
fn into(self: LogicalSize<P>) -> (X, X) {
(self.width.cast(), self.height.cast())
2018-06-14 19:42:18 -04:00
}
}
impl<P: Pixel, X: Pixel> From<[X; 2]> for LogicalSize<P> {
fn from([x, y]: [X; 2]) -> LogicalSize<P> {
LogicalSize::new(x.cast(), y.cast())
}
}
impl<P: Pixel, X: Pixel> Into<[X; 2]> for LogicalSize<P> {
fn into(self: Self) -> [X; 2] {
[self.width.cast(), self.height.cast()]
}
}
#[cfg(feature = "mint")]
impl<P: Pixel> From<mint::Vector2<P>> for LogicalSize<P> {
fn from(mint: mint::Vector2<P>) -> Self {
Self::new(mint.x, mint.y)
}
}
#[cfg(feature = "mint")]
impl<P: Pixel> From<LogicalSize<P>> for mint::Vector2<P> {
fn from(winit: LogicalSize<P>) -> Self {
mint::Vector2 {
x: winit.width,
y: winit.height,
}
}
}
2018-06-14 19:42:18 -04:00
/// A size represented in physical pixels.
#[derive(Debug, Copy, Clone, Eq, PartialEq, Default, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct PhysicalSize<P> {
pub width: P,
pub height: P,
2018-06-14 19:42:18 -04:00
}
impl<P> PhysicalSize<P> {
2018-06-14 19:42:18 -04:00
#[inline]
pub const fn new(width: P, height: P) -> Self {
2018-06-14 19:42:18 -04:00
PhysicalSize { width, height }
}
}
2018-06-14 19:42:18 -04:00
impl<P: Pixel> PhysicalSize<P> {
2018-06-14 19:42:18 -04:00
#[inline]
pub fn from_logical<T: Into<LogicalSize<X>>, X: Pixel>(logical: T, scale_factor: f64) -> Self {
logical.into().to_physical(scale_factor)
2018-06-14 19:42:18 -04:00
}
#[inline]
pub fn to_logical<X: Pixel>(&self, scale_factor: f64) -> LogicalSize<X> {
assert!(validate_scale_factor(scale_factor));
let width = self.width.into() / scale_factor;
let height = self.height.into() / scale_factor;
LogicalSize::new(width, height).cast()
2018-06-14 19:42:18 -04:00
}
#[inline]
pub fn cast<X: Pixel>(&self) -> PhysicalSize<X> {
PhysicalSize {
width: self.width.cast(),
height: self.height.cast(),
}
2018-06-14 19:42:18 -04:00
}
}
impl<P: Pixel, X: Pixel> From<(X, X)> for PhysicalSize<P> {
fn from((x, y): (X, X)) -> PhysicalSize<P> {
PhysicalSize::new(x.cast(), y.cast())
}
}
impl<P: Pixel, X: Pixel> Into<(X, X)> for PhysicalSize<P> {
fn into(self: Self) -> (X, X) {
(self.width.cast(), self.height.cast())
2018-06-14 19:42:18 -04:00
}
}
impl<P: Pixel, X: Pixel> From<[X; 2]> for PhysicalSize<P> {
fn from([x, y]: [X; 2]) -> PhysicalSize<P> {
PhysicalSize::new(x.cast(), y.cast())
}
}
impl<P: Pixel, X: Pixel> Into<[X; 2]> for PhysicalSize<P> {
fn into(self: Self) -> [X; 2] {
[self.width.cast(), self.height.cast()]
}
}
#[cfg(feature = "mint")]
impl<P: Pixel> From<mint::Vector2<P>> for PhysicalSize<P> {
fn from(mint: mint::Vector2<P>) -> Self {
Self::new(mint.x, mint.y)
}
}
#[cfg(feature = "mint")]
impl<P: Pixel> From<PhysicalSize<P>> for mint::Vector2<P> {
fn from(winit: PhysicalSize<P>) -> Self {
mint::Vector2 {
x: winit.width,
y: winit.height,
}
}
}
/// A size that's either physical or logical.
#[derive(Debug, Copy, Clone, PartialEq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum Size {
Physical(PhysicalSize<u32>),
Logical(LogicalSize<f64>),
}
impl Size {
pub fn new<S: Into<Size>>(size: S) -> Size {
size.into()
}
pub fn to_logical<P: Pixel>(&self, scale_factor: f64) -> LogicalSize<P> {
match *self {
Size::Physical(size) => size.to_logical(scale_factor),
Size::Logical(size) => size.cast(),
}
}
pub fn to_physical<P: Pixel>(&self, scale_factor: f64) -> PhysicalSize<P> {
match *self {
Size::Physical(size) => size.cast(),
Size::Logical(size) => size.to_physical(scale_factor),
}
}
}
impl<P: Pixel> From<PhysicalSize<P>> for Size {
2018-06-14 19:42:18 -04:00
#[inline]
fn from(size: PhysicalSize<P>) -> Size {
Size::Physical(size.cast())
2018-06-14 19:42:18 -04:00
}
}
impl<P: Pixel> From<LogicalSize<P>> for Size {
2018-06-14 19:42:18 -04:00
#[inline]
fn from(size: LogicalSize<P>) -> Size {
Size::Logical(size.cast())
}
}
/// A position that's either physical or logical.
#[derive(Debug, Copy, Clone, PartialEq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum Position {
Physical(PhysicalPosition<i32>),
Logical(LogicalPosition<f64>),
}
impl Position {
pub fn new<S: Into<Position>>(position: S) -> Position {
position.into()
}
pub fn to_logical<P: Pixel>(&self, scale_factor: f64) -> LogicalPosition<P> {
match *self {
Position::Physical(position) => position.to_logical(scale_factor),
Position::Logical(position) => position.cast(),
}
}
pub fn to_physical<P: Pixel>(&self, scale_factor: f64) -> PhysicalPosition<P> {
match *self {
Position::Physical(position) => position.cast(),
Position::Logical(position) => position.to_physical(scale_factor),
}
}
}
impl<P: Pixel> From<PhysicalPosition<P>> for Position {
#[inline]
fn from(position: PhysicalPosition<P>) -> Position {
Position::Physical(position.cast())
}
}
impl<P: Pixel> From<LogicalPosition<P>> for Position {
#[inline]
fn from(position: LogicalPosition<P>) -> Position {
Position::Logical(position.cast())
2018-06-14 19:42:18 -04:00
}
}