X11: util design improvements (#534)

This commit is contained in:
Francesca Frangipane 2018-05-27 08:49:35 -04:00 committed by GitHub
parent 282770f11a
commit 30f798b246
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
16 changed files with 992 additions and 1073 deletions

View file

@ -40,7 +40,7 @@ impl DndAtoms {
b"text/uri-list\0".as_ptr() as *mut c_char,
b"None\0".as_ptr() as *mut c_char,
];
let atoms = unsafe { util::get_atoms(xconn, &names) }?;
let atoms = unsafe { xconn.get_atoms(&names) }?;
Ok(DndAtoms {
aware: atoms[0],
enter: atoms[1],
@ -127,13 +127,12 @@ impl Dnd {
DndState::Accepted => (1, self.atoms.action_private as c_long),
DndState::Rejected => (0, self.atoms.none as c_long),
};
util::send_client_msg(
&self.xconn,
self.xconn.send_client_msg(
target_window,
target_window,
self.atoms.status,
None,
(this_window as c_long, accepted, 0, 0, action),
[this_window as c_long, accepted, 0, 0, action],
).flush()
}
@ -147,13 +146,12 @@ impl Dnd {
DndState::Accepted => (1, self.atoms.action_private as c_long),
DndState::Rejected => (0, self.atoms.none as c_long),
};
util::send_client_msg(
&self.xconn,
self.xconn.send_client_msg(
target_window,
target_window,
self.atoms.finished,
None,
(this_window as c_long, accepted, action, 0, 0),
[this_window as c_long, accepted, action, 0, 0],
).flush()
}
@ -161,8 +159,7 @@ impl Dnd {
&self,
source_window: c_ulong,
) -> Result<Vec<ffi::Atom>, util::GetPropertyError> {
util::get_property(
&self.xconn,
self.xconn.get_property(
source_window,
self.atoms.type_list,
ffi::XA_ATOM,
@ -184,8 +181,7 @@ impl Dnd {
&self,
window: c_ulong,
) -> Result<Vec<c_uchar>, util::GetPropertyError> {
util::get_property(
&self.xconn,
self.xconn.get_property(
window,
self.atoms.selection,
self.atoms.uri_list,

View file

@ -85,13 +85,11 @@ enum GetXimServersError {
// modifiers, since we don't want a user who's looking at logs to ask "am I supposed to set
// XMODIFIERS to `@server=ibus`?!?"
unsafe fn get_xim_servers(xconn: &Arc<XConnection>) -> Result<Vec<String>, GetXimServersError> {
let servers_atom = util::get_atom(&xconn, b"XIM_SERVERS\0")
.map_err(GetXimServersError::XError)?;
let servers_atom = xconn.get_atom_unchecked(b"XIM_SERVERS\0");
let root = (xconn.xlib.XDefaultRootWindow)(xconn.display);
let mut atoms: Vec<ffi::Atom> = util::get_property(
&xconn,
let mut atoms: Vec<ffi::Atom> = xconn.get_property(
root,
servers_atom,
ffi::XA_ATOM,

View file

@ -75,8 +75,7 @@ impl EventsLoop {
pub fn new(display: Arc<XConnection>) -> EventsLoop {
let root = unsafe { (display.xlib.XDefaultRootWindow)(display.display) };
let wm_delete_window = unsafe { util::get_atom(&display, b"WM_DELETE_WINDOW\0") }
.expect("Failed to call XInternAtom (WM_DELETE_WINDOW)");
let wm_delete_window = unsafe { display.get_atom_unchecked(b"WM_DELETE_WINDOW\0") };
let dnd = Dnd::new(Arc::clone(&display))
.expect("Failed to call XInternAtoms when initializing drag and drop");
@ -130,7 +129,7 @@ impl EventsLoop {
}
}
util::update_cached_wm_info(&display, root);
display.update_cached_wm_info(root);
let wakeup_dummy_window = unsafe {
let (x, y, w, h) = (10, 10, 10, 10);
@ -166,14 +165,8 @@ impl EventsLoop {
};
// Register for device hotplug events
unsafe {
util::select_xinput_events(
&result.display,
root,
ffi::XIAllDevices,
ffi::XI_HierarchyChangedMask,
)
}.queue(); // The request buffer is flushed during init_device
// (The request buffer is flushed during `init_device`)
result.display.select_xinput_events(root, ffi::XIAllDevices, ffi::XI_HierarchyChangedMask).queue();
result.init_device(ffi::XIAllDevices);
@ -484,11 +477,7 @@ impl EventsLoop {
.unwrap()
.inner_pos_to_outer(inner_x, inner_y)
} else {
let extents = util::get_frame_extents_heuristic(
&self.display,
window,
self.root,
);
let extents = self.display.get_frame_extents_heuristic(window, self.root);
let outer_pos = extents.inner_pos_to_outer(inner_x, inner_y);
(*window_state_lock).frame_extents = Some(extents);
outer_pos
@ -513,7 +502,7 @@ impl EventsLoop {
// (which is almost all of them). Failing to correctly update WM info doesn't
// really have much impact, since on the WMs affected (xmonad, dwm, etc.) the only
// effect is that we waste some time trying to query unsupported properties.
util::update_cached_wm_info(&self.display, self.root);
self.display.update_cached_wm_info(self.root);
self.shared_state
.borrow()
@ -614,7 +603,7 @@ impl EventsLoop {
if state == Pressed {
let written = if let Some(ic) = self.ime.borrow().get_context(window) {
unsafe { util::lookup_utf8(&self.display, ic, xkev) }
self.display.lookup_utf8(ic, xkev)
} else {
return;
};
@ -841,13 +830,8 @@ impl EventsLoop {
// The mods field on this event isn't actually populated, so query the
// pointer device. In the future, we can likely remove this round-trip by
// relying on Xkb for modifier values.
let modifiers = unsafe {
util::query_pointer(
&self.display,
xev.event,
xev.deviceid,
)
}.expect("Failed to query pointer device").get_modifier_state();
let modifiers = self.display.query_pointer(xev.event, xev.deviceid)
.expect("Failed to query pointer device").get_modifier_state();
callback(Event::WindowEvent { window_id, event: CursorMoved {
device_id,
@ -1094,16 +1078,13 @@ impl EventsLoopProxy {
// NOTE: This design is taken from the old `WindowProxy::wakeup` implementation. It
// assumes that X11 is thread safe. Is this true?
// (WARNING: it's probably not true)
unsafe {
util::send_client_msg(
&display,
self.wakeup_dummy_window,
self.wakeup_dummy_window,
0,
None,
(0, 0, 0, 0, 0),
)
}.flush().expect("Failed to call XSendEvent after wakeup");
display.send_client_msg(
self.wakeup_dummy_window,
self.wakeup_dummy_window,
0,
None,
[0, 0, 0, 0, 0],
).flush().expect("Failed to call XSendEvent after wakeup");
Ok(())
}
@ -1320,14 +1301,8 @@ impl Device {
| ffi::XI_RawButtonReleaseMask
| ffi::XI_RawKeyPressMask
| ffi::XI_RawKeyReleaseMask;
unsafe {
util::select_xinput_events(
&el.display,
el.root,
info.deviceid,
mask,
)
}.queue(); // The request buffer is flushed when we poll for events
// The request buffer is flushed when we poll for events
el.display.select_xinput_events(el.root, info.deviceid, mask).queue();
// Identify scroll axes
for class_ptr in Device::classes(info) {

View file

@ -66,7 +66,7 @@ impl MonitorId {
repr: util::MonitorRepr,
primary: bool,
) -> Self {
let (name, hidpi_factor) = unsafe { util::get_output_info(xconn, resources, &repr) };
let (name, hidpi_factor) = unsafe { xconn.get_output_info(resources, &repr) };
let (dimensions, position) = unsafe { (repr.get_dimensions(), repr.get_position()) };
let rect = util::Rect::new(position, dimensions);
MonitorId {

View file

@ -1,5 +1,6 @@
use std::collections::HashMap;
use std::ffi::{CStr, CString};
use std::fmt::Debug;
use std::os::raw::*;
use parking_lot::Mutex;
@ -12,48 +13,60 @@ lazy_static! {
static ref ATOM_CACHE: Mutex<AtomCache> = Mutex::new(HashMap::with_capacity(2048));
}
pub unsafe fn get_atom(xconn: &Arc<XConnection>, name: &[u8]) -> Result<ffi::Atom, XError> {
let name = CStr::from_bytes_with_nul_unchecked(name); // I trust you. Don't let me down.
let mut atom_cache_lock = ATOM_CACHE.lock();
let cached_atom = (*atom_cache_lock).get(name).cloned();
if let Some(atom) = cached_atom {
Ok(atom)
} else {
let atom = (xconn.xlib.XInternAtom)(
xconn.display,
name.as_ptr() as *const c_char,
impl XConnection {
pub fn get_atom<T: AsRef<CStr> + Debug>(&self, name: T) -> ffi::Atom {
let name = name.as_ref();
let mut atom_cache_lock = ATOM_CACHE.lock();
let cached_atom = (*atom_cache_lock).get(name).cloned();
if let Some(atom) = cached_atom {
atom
} else {
let atom = unsafe { (self.xlib.XInternAtom)(
self.display,
name.as_ptr() as *const c_char,
ffi::False,
) };
if atom == 0 {
let msg = format!(
"`XInternAtom` failed, which really shouldn't happen. Atom: {:?}, Error: {:#?}",
name,
self.check_errors(),
);
panic!(msg);
}
/*println!(
"XInternAtom name:{:?} atom:{:?}",
name,
atom,
);*/
(*atom_cache_lock).insert(name.to_owned(), atom);
atom
}
}
pub unsafe fn get_atom_unchecked(&self, name: &[u8]) -> ffi::Atom {
debug_assert!(CStr::from_bytes_with_nul(name).is_ok());
let name = CStr::from_bytes_with_nul_unchecked(name);
self.get_atom(name)
}
// Note: this doesn't use caching, for the sake of simplicity.
// If you're dealing with this many atoms, you'll usually want to cache them locally anyway.
pub unsafe fn get_atoms(&self, names: &[*mut c_char]) -> Result<Vec<ffi::Atom>, XError> {
let mut atoms = Vec::with_capacity(names.len());
(self.xlib.XInternAtoms)(
self.display,
names.as_ptr() as *mut _,
names.len() as c_int,
ffi::False,
atoms.as_mut_ptr(),
);
self.check_errors()?;
atoms.set_len(names.len());
/*println!(
"XInternAtom name:{:?} atom:{:?}",
name,
atom,
"XInternAtoms atoms:{:?}",
atoms,
);*/
xconn.check_errors()?;
(*atom_cache_lock).insert(name.to_owned(), atom);
Ok(atom)
Ok(atoms)
}
}
// Note: this doesn't use caching, for the sake of simplicity.
// If you're dealing with this many atoms, you'll usually want to cache them locally anyway.
pub unsafe fn get_atoms(
xconn: &Arc<XConnection>,
names: &[*mut c_char],
) -> Result<Vec<ffi::Atom>, XError> {
let mut atoms = Vec::with_capacity(names.len());
(xconn.xlib.XInternAtoms)(
xconn.display,
names.as_ptr() as *mut _,
names.len() as c_int,
ffi::False,
atoms.as_mut_ptr(),
);
xconn.check_errors()?;
atoms.set_len(names.len());
/*println!(
"XInternAtoms atoms:{:?}",
atoms,
);*/
Ok(atoms)
}

View file

@ -0,0 +1,95 @@
use super::*;
pub type ClientMsgPayload = [c_long; 5];
impl XConnection {
pub fn send_event<T: Into<ffi::XEvent>>(
&self,
target_window: c_ulong,
event_mask: Option<c_long>,
event: T,
) -> Flusher {
let event_mask = event_mask.unwrap_or(ffi::NoEventMask);
unsafe {
(self.xlib.XSendEvent)(
self.display,
target_window,
ffi::False,
event_mask,
&mut event.into(),
);
}
Flusher::new(self)
}
pub fn send_client_msg(
&self,
window: c_ulong, // The window this is "about"; not necessarily this window
target_window: c_ulong, // The window we're sending to
message_type: ffi::Atom,
event_mask: Option<c_long>,
data: ClientMsgPayload,
) -> Flusher {
let mut event: ffi::XClientMessageEvent = unsafe { mem::uninitialized() };
event.type_ = ffi::ClientMessage;
event.display = self.display;
event.window = window;
event.message_type = message_type;
event.format = c_long::FORMAT as c_int;
event.data = unsafe { mem::transmute(data) };
self.send_event(target_window, event_mask, event)
}
// Prepare yourself for the ultimate in unsafety!
// You should favor `send_client_msg` whenever possible, but some protocols (i.e. startup notification) require you
// to send more than one message worth of data.
pub fn send_client_msg_multi<T: Formattable>(
&self,
window: c_ulong, // The window this is "about"; not necessarily this window
target_window: c_ulong, // The window we're sending to
message_type: ffi::Atom,
event_mask: Option<c_long>,
data: &[T],
) -> Flusher {
let format = T::FORMAT;
let size_of_t = mem::size_of::<T>();
debug_assert_eq!(size_of_t, format.get_actual_size());
let mut event: ffi::XClientMessageEvent = unsafe { mem::uninitialized() };
event.type_ = ffi::ClientMessage;
event.display = self.display;
event.window = window;
event.message_type = message_type;
event.format = format as c_int;
let t_per_payload = format.get_payload_size() / size_of_t;
assert!(t_per_payload > 0);
let payload_count = data.len() / t_per_payload;
let payload_remainder = data.len() % t_per_payload;
let payload_ptr = data.as_ptr() as *const ClientMsgPayload;
let mut payload_index = 0;
while payload_index < payload_count {
let payload = unsafe { payload_ptr.offset(payload_index as isize) };
payload_index += 1;
event.data = unsafe { mem::transmute(*payload) };
self.send_event(target_window, event_mask, &event).queue();
}
if payload_remainder > 0 {
let mut payload: ClientMsgPayload = [0; 5];
let t_payload = payload.as_mut_ptr() as *mut T;
let invalid_payload = unsafe { payload_ptr.offset(payload_index as isize) };
let invalid_t_payload = invalid_payload as *const T;
let mut t_index = 0;
while t_index < payload_remainder {
let valid_t = unsafe { invalid_t_payload.offset(t_index as isize) };
unsafe { (*t_payload.offset(t_index as isize)) = (*valid_t).clone() };
t_index += 1;
}
event.data = unsafe { mem::transmute(payload) };
self.send_event(target_window, event_mask, &event).queue();
}
Flusher::new(self)
}
}

View file

@ -0,0 +1,58 @@
use std::fmt::Debug;
use std::mem;
use std::os::raw::*;
// This isn't actually the number of the bits in the format.
// X11 does a match on this value to determine which type to call sizeof on.
// Thus, we use 32 for c_long, since 32 maps to c_long which maps to 64.
// ...if that sounds confusing, then you know why this enum is here.
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord)]
pub enum Format {
Char = 8,
Short = 16,
Long = 32,
}
impl Format {
pub fn from_format(format: usize) -> Option<Self> {
match format {
8 => Some(Format::Char),
16 => Some(Format::Short),
32 => Some(Format::Long),
_ => None,
}
}
pub fn is_same_size_as<T>(&self) -> bool {
mem::size_of::<T>() == self.get_actual_size()
}
pub fn get_actual_size(&self) -> usize {
match self {
&Format::Char => mem::size_of::<c_char>(),
&Format::Short => mem::size_of::<c_short>(),
&Format::Long => mem::size_of::<c_long>(),
}
}
pub fn get_payload_size(&self) -> usize {
match self {
// Due to the wonders of X11, half the space goes unused if you're not using longs (on 64-bit).
&Format::Char => mem::size_of::<c_char>() * 20,
&Format::Short => mem::size_of::<c_short>() * 10,
&Format::Long => mem::size_of::<c_long>() * 5,
}
}
}
pub trait Formattable: Debug + Clone + Copy + PartialEq + PartialOrd {
const FORMAT: Format;
}
// You might be surprised by the absence of c_int, but not as surprised as X11 would be by the presence of it.
impl Formattable for c_char { const FORMAT: Format = Format::Char; }
impl Formattable for c_uchar { const FORMAT: Format = Format::Char; }
impl Formattable for c_short { const FORMAT: Format = Format::Short; }
impl Formattable for c_ushort { const FORMAT: Format = Format::Short; }
impl Formattable for c_long { const FORMAT: Format = Format::Long; }
impl Formattable for c_ulong { const FORMAT: Format = Format::Long; }

View file

@ -42,30 +42,6 @@ pub struct TranslatedCoords {
pub child: ffi::Window,
}
// This is adequate for get_inner_position
pub unsafe fn translate_coords(
xconn: &Arc<XConnection>,
window: ffi::Window,
root: ffi::Window,
) -> Result<TranslatedCoords, XError> {
let mut translated_coords: TranslatedCoords = mem::uninitialized();
(xconn.xlib.XTranslateCoordinates)(
xconn.display,
window,
root,
0,
0,
&mut translated_coords.x_rel_root,
&mut translated_coords.y_rel_root,
&mut translated_coords.child,
);
//println!("XTranslateCoordinates coords:{:?}", translated_coords);
xconn.check_errors().map(|_| translated_coords)
}
#[derive(Debug)]
pub struct Geometry {
pub root: ffi::Window,
@ -86,30 +62,6 @@ pub struct Geometry {
pub depth: c_uint,
}
// This is adequate for get_inner_size
pub unsafe fn get_geometry(
xconn: &Arc<XConnection>,
window: ffi::Window,
) -> Result<Geometry, XError> {
let mut geometry: Geometry = mem::uninitialized();
let _status = (xconn.xlib.XGetGeometry)(
xconn.display,
window,
&mut geometry.root,
&mut geometry.x_rel_parent,
&mut geometry.y_rel_parent,
&mut geometry.width,
&mut geometry.height,
&mut geometry.border,
&mut geometry.depth,
);
//println!("XGetGeometry geo:{:?}", geometry);
xconn.check_errors().map(|_| geometry)
}
#[derive(Debug, Clone)]
pub struct FrameExtents {
pub left: c_ulong,
@ -128,109 +80,6 @@ impl FrameExtents {
}
}
fn get_frame_extents(
xconn: &Arc<XConnection>,
window: ffi::Window,
) -> Option<self::FrameExtents> {
let extents_atom = unsafe { self::get_atom(xconn, b"_NET_FRAME_EXTENTS\0") }
.expect("Failed to call XInternAtom (_NET_FRAME_EXTENTS)");
if !self::hint_is_supported(extents_atom) {
return None;
}
// Of the WMs tested, xmonad, i3, dwm, IceWM (1.3.x and earlier), and blackbox don't
// support this. As this is part of EWMH (Extended Window Manager Hints), it's likely to
// be unsupported by many smaller WMs.
let extents: Option<Vec<c_ulong>> = unsafe {
self::get_property(
xconn,
window,
extents_atom,
ffi::XA_CARDINAL,
)
}.ok();
extents.and_then(|extents| {
if extents.len() >= 4 {
Some(self::FrameExtents {
left: extents[0],
right: extents[1],
top: extents[2],
bottom: extents[3],
})
} else {
None
}
})
}
pub fn is_top_level(
xconn: &Arc<XConnection>,
window: ffi::Window,
root: ffi::Window,
) -> Option<bool> {
let client_list_atom = unsafe { self::get_atom(xconn, b"_NET_CLIENT_LIST\0") }
.expect("Failed to call XInternAtom (_NET_CLIENT_LIST)");
if !self::hint_is_supported(client_list_atom) {
return None;
}
let client_list: Option<Vec<ffi::Window>> = unsafe {
self::get_property(
xconn,
root,
client_list_atom,
ffi::XA_WINDOW,
)
}.ok();
client_list.map(|client_list| client_list.contains(&window))
}
unsafe fn get_parent_window(
xconn: &Arc<XConnection>,
window: ffi::Window,
) -> Result<ffi::Window, XError> {
let mut root: ffi::Window = mem::uninitialized();
let mut parent: ffi::Window = mem::uninitialized();
let mut children: *mut ffi::Window = ptr::null_mut();
let mut nchildren: c_uint = mem::uninitialized();
let _status = (xconn.xlib.XQueryTree)(
xconn.display,
window,
&mut root,
&mut parent,
&mut children,
&mut nchildren,
);
// The list of children isn't used
if children != ptr::null_mut() {
(xconn.xlib.XFree)(children as *mut _);
}
xconn.check_errors().map(|_| parent)
}
fn climb_hierarchy(
xconn: &Arc<XConnection>,
window: ffi::Window,
root: ffi::Window,
) -> Result<ffi::Window, XError> {
let mut outer_window = window;
loop {
let candidate = unsafe { get_parent_window(xconn, outer_window) }?;
if candidate == root {
break;
}
outer_window = candidate;
}
Ok(outer_window)
}
#[derive(Debug, Clone, PartialEq)]
pub enum FrameExtentsHeuristicPath {
Supported,
@ -266,120 +115,237 @@ impl FrameExtentsHeuristic {
}
}
pub fn get_frame_extents_heuristic(
xconn: &Arc<XConnection>,
window: ffi::Window,
root: ffi::Window,
) -> FrameExtentsHeuristic {
use self::FrameExtentsHeuristicPath::*;
impl XConnection {
// This is adequate for get_inner_position
pub fn translate_coords(&self, window: ffi::Window, root: ffi::Window) -> Result<TranslatedCoords, XError> {
let mut translated_coords: TranslatedCoords = unsafe { mem::uninitialized() };
unsafe {
(self.xlib.XTranslateCoordinates)(
self.display,
window,
root,
0,
0,
&mut translated_coords.x_rel_root,
&mut translated_coords.y_rel_root,
&mut translated_coords.child,
);
}
//println!("XTranslateCoordinates coords:{:?}", translated_coords);
self.check_errors().map(|_| translated_coords)
}
// Position relative to root window.
// With rare exceptions, this is the position of a nested window. Cases where the window
// isn't nested are outlined in the comments throghout this function, but in addition to
// that, fullscreen windows often aren't nested.
let (inner_y_rel_root, child) = {
let coords = unsafe { translate_coords(xconn, window, root) }
.expect("Failed to translate window coordinates");
(
coords.y_rel_root,
coords.child,
)
};
// This is adequate for get_inner_size
pub fn get_geometry(&self, window: ffi::Window) -> Result<Geometry, XError> {
let mut geometry: Geometry = unsafe { mem::uninitialized() };
let _status = unsafe {
(self.xlib.XGetGeometry)(
self.display,
window,
&mut geometry.root,
&mut geometry.x_rel_parent,
&mut geometry.y_rel_parent,
&mut geometry.width,
&mut geometry.height,
&mut geometry.border,
&mut geometry.depth,
)
};
//println!("XGetGeometry geo:{:?}", geometry);
self.check_errors().map(|_| geometry)
}
let (width, height, border) = {
let inner_geometry = unsafe { get_geometry(xconn, window) }
.expect("Failed to get inner window geometry");
(
inner_geometry.width,
inner_geometry.height,
inner_geometry.border,
)
};
fn get_frame_extents(&self, window: ffi::Window) -> Option<FrameExtents> {
let extents_atom = unsafe { self.get_atom_unchecked(b"_NET_FRAME_EXTENTS\0") };
// The first condition is only false for un-nested windows, but isn't always false for
// un-nested windows. Mutter/Muffin/Budgie and Marco present a mysterious discrepancy:
// when y is on the range [0, 2] and if the window has been unfocused since being
// undecorated (or was undecorated upon construction), the first condition is true,
// requiring us to rely on the second condition.
let nested = !(window == child || is_top_level(xconn, child, root) == Some(true));
// Hopefully the WM supports EWMH, allowing us to get exact info on the window frames.
if let Some(mut frame_extents) = get_frame_extents(xconn, window) {
// Mutter/Muffin/Budgie and Marco preserve their decorated frame extents when
// decorations are disabled, but since the window becomes un-nested, it's easy to
// catch.
if !nested {
frame_extents = FrameExtents::new(0, 0, 0, 0);
if !hint_is_supported(extents_atom) {
return None;
}
// The difference between the nested window's position and the outermost window's
// position is equivalent to the frame size. In most scenarios, this is equivalent to
// manually climbing the hierarchy as is done in the case below. Here's a list of
// known discrepancies:
// * Mutter/Muffin/Budgie gives decorated windows a margin of 9px (only 7px on top) in
// addition to a 1px semi-transparent border. The margin can be easily observed by
// using a screenshot tool to get a screenshot of a selected window, and is
// presumably used for drawing drop shadows. Getting window geometry information
// via hierarchy-climbing results in this margin being included in both the
// position and outer size, so a window positioned at (0, 0) would be reported as
// having a position (-10, -8).
// * Compiz has a drop shadow margin just like Mutter/Muffin/Budgie, though it's 10px
// on all sides, and there's no additional border.
// * Enlightenment otherwise gets a y position equivalent to inner_y_rel_root.
// Without decorations, there's no difference. This is presumably related to
// Enlightenment's fairly unique concept of window position; it interprets
// positions given to XMoveWindow as a client area position rather than a position
// of the overall window.
// Of the WMs tested, xmonad, i3, dwm, IceWM (1.3.x and earlier), and blackbox don't
// support this. As this is part of EWMH (Extended Window Manager Hints), it's likely to
// be unsupported by many smaller WMs.
let extents: Option<Vec<c_ulong>> = self.get_property(
window,
extents_atom,
ffi::XA_CARDINAL,
).ok();
FrameExtentsHeuristic {
frame_extents,
heuristic_path: Supported,
extents.and_then(|extents| {
if extents.len() >= 4 {
Some(FrameExtents {
left: extents[0],
right: extents[1],
top: extents[2],
bottom: extents[3],
})
} else {
None
}
})
}
pub fn is_top_level(&self, window: ffi::Window, root: ffi::Window) -> Option<bool> {
let client_list_atom = unsafe { self.get_atom_unchecked(b"_NET_CLIENT_LIST\0") };
if !hint_is_supported(client_list_atom) {
return None;
}
} else if nested {
// If the position value we have is for a nested window used as the client area, we'll
// just climb up the hierarchy and get the geometry of the outermost window we're
// nested in.
let outer_window = climb_hierarchy(xconn, window, root)
.expect("Failed to climb window hierarchy");
let (outer_y, outer_width, outer_height) = {
let outer_geometry = unsafe { get_geometry(xconn, outer_window) }
.expect("Failed to get outer window geometry");
let client_list: Option<Vec<ffi::Window>> = self.get_property(
root,
client_list_atom,
ffi::XA_WINDOW,
).ok();
client_list.map(|client_list| client_list.contains(&window))
}
fn get_parent_window(&self, window: ffi::Window) -> Result<ffi::Window, XError> {
let parent = unsafe {
let mut root: ffi::Window = mem::uninitialized();
let mut parent: ffi::Window = mem::uninitialized();
let mut children: *mut ffi::Window = ptr::null_mut();
let mut nchildren: c_uint = mem::uninitialized();
// What's filled into `parent` if `window` is the root window?
let _status = (self.xlib.XQueryTree)(
self.display,
window,
&mut root,
&mut parent,
&mut children,
&mut nchildren,
);
// The list of children isn't used
if children != ptr::null_mut() {
(self.xlib.XFree)(children as *mut _);
}
parent
};
self.check_errors().map(|_| parent)
}
fn climb_hierarchy(&self, window: ffi::Window, root: ffi::Window) -> Result<ffi::Window, XError> {
let mut outer_window = window;
loop {
let candidate = self.get_parent_window(outer_window)?;
if candidate == root {
break;
}
outer_window = candidate;
}
Ok(outer_window)
}
pub fn get_frame_extents_heuristic(&self, window: ffi::Window, root: ffi::Window) -> FrameExtentsHeuristic {
use self::FrameExtentsHeuristicPath::*;
// Position relative to root window.
// With rare exceptions, this is the position of a nested window. Cases where the window
// isn't nested are outlined in the comments throghout this function, but in addition to
// that, fullscreen windows often aren't nested.
let (inner_y_rel_root, child) = {
let coords = self.translate_coords(window, root).expect("Failed to translate window coordinates");
(
outer_geometry.y_rel_parent,
outer_geometry.width,
outer_geometry.height,
coords.y_rel_root,
coords.child,
)
};
// Since we have the geometry of the outermost window and the geometry of the client
// area, we can figure out what's in between.
let diff_x = outer_width.saturating_sub(width);
let diff_y = outer_height.saturating_sub(height);
let offset_y = inner_y_rel_root.saturating_sub(outer_y) as c_uint;
let (width, height, border) = {
let inner_geometry = self.get_geometry(window).expect("Failed to get inner window geometry");
(
inner_geometry.width,
inner_geometry.height,
inner_geometry.border,
)
};
let left = diff_x / 2;
let right = left;
let top = offset_y;
let bottom = diff_y.saturating_sub(offset_y);
// The first condition is only false for un-nested windows, but isn't always false for
// un-nested windows. Mutter/Muffin/Budgie and Marco present a mysterious discrepancy:
// when y is on the range [0, 2] and if the window has been unfocused since being
// undecorated (or was undecorated upon construction), the first condition is true,
// requiring us to rely on the second condition.
let nested = !(window == child || self.is_top_level(child, root) == Some(true));
let frame_extents = FrameExtents::new(
left.into(),
right.into(),
top.into(),
bottom.into(),
);
FrameExtentsHeuristic {
frame_extents,
heuristic_path: UnsupportedNested,
}
} else {
// This is the case for xmonad and dwm, AKA the only WMs tested that supplied a
// border value. This is convenient, since we can use it to get an accurate frame.
let frame_extents = FrameExtents::from_border(border.into());
FrameExtentsHeuristic {
frame_extents,
heuristic_path: UnsupportedBordered,
// Hopefully the WM supports EWMH, allowing us to get exact info on the window frames.
if let Some(mut frame_extents) = self.get_frame_extents(window) {
// Mutter/Muffin/Budgie and Marco preserve their decorated frame extents when
// decorations are disabled, but since the window becomes un-nested, it's easy to
// catch.
if !nested {
frame_extents = FrameExtents::new(0, 0, 0, 0);
}
// The difference between the nested window's position and the outermost window's
// position is equivalent to the frame size. In most scenarios, this is equivalent to
// manually climbing the hierarchy as is done in the case below. Here's a list of
// known discrepancies:
// * Mutter/Muffin/Budgie gives decorated windows a margin of 9px (only 7px on top) in
// addition to a 1px semi-transparent border. The margin can be easily observed by
// using a screenshot tool to get a screenshot of a selected window, and is
// presumably used for drawing drop shadows. Getting window geometry information
// via hierarchy-climbing results in this margin being included in both the
// position and outer size, so a window positioned at (0, 0) would be reported as
// having a position (-10, -8).
// * Compiz has a drop shadow margin just like Mutter/Muffin/Budgie, though it's 10px
// on all sides, and there's no additional border.
// * Enlightenment otherwise gets a y position equivalent to inner_y_rel_root.
// Without decorations, there's no difference. This is presumably related to
// Enlightenment's fairly unique concept of window position; it interprets
// positions given to XMoveWindow as a client area position rather than a position
// of the overall window.
FrameExtentsHeuristic {
frame_extents,
heuristic_path: Supported,
}
} else if nested {
// If the position value we have is for a nested window used as the client area, we'll
// just climb up the hierarchy and get the geometry of the outermost window we're
// nested in.
let outer_window = self.climb_hierarchy(window, root).expect("Failed to climb window hierarchy");
let (outer_y, outer_width, outer_height) = {
let outer_geometry = self.get_geometry(outer_window).expect("Failed to get outer window geometry");
(
outer_geometry.y_rel_parent,
outer_geometry.width,
outer_geometry.height,
)
};
// Since we have the geometry of the outermost window and the geometry of the client
// area, we can figure out what's in between.
let diff_x = outer_width.saturating_sub(width);
let diff_y = outer_height.saturating_sub(height);
let offset_y = inner_y_rel_root.saturating_sub(outer_y) as c_uint;
let left = diff_x / 2;
let right = left;
let top = offset_y;
let bottom = diff_y.saturating_sub(offset_y);
let frame_extents = FrameExtents::new(
left.into(),
right.into(),
top.into(),
bottom.into(),
);
FrameExtentsHeuristic {
frame_extents,
heuristic_path: UnsupportedNested,
}
} else {
// This is the case for xmonad and dwm, AKA the only WMs tested that supplied a
// border value. This is convenient, since we can use it to get an accurate frame.
let frame_extents = FrameExtents::from_border(border.into());
FrameExtentsHeuristic {
frame_extents,
heuristic_path: UnsupportedBordered,
}
}
}
}

View file

@ -1,3 +1,5 @@
use std::sync::Arc;
use super::*;
pub const MWM_HINTS_DECORATIONS: c_ulong = 2;
@ -6,12 +8,12 @@ pub const MWM_HINTS_DECORATIONS: c_ulong = 2;
pub enum StateOperation {
Remove = 0, // _NET_WM_STATE_REMOVE
Add = 1, // _NET_WM_STATE_ADD
_Toggle = 2, // _NET_WM_STATE_TOGGLE
Toggle = 2, // _NET_WM_STATE_TOGGLE
}
impl From<bool> for StateOperation {
fn from(b: bool) -> Self {
if b {
fn from(op: bool) -> Self {
if op {
StateOperation::Add
} else {
StateOperation::Remove
@ -62,7 +64,30 @@ impl WindowType {
&Dialog => b"_NET_WM_WINDOW_TYPE_DIALOG\0",
&Normal => b"_NET_WM_WINDOW_TYPE_NORMAL\0",
};
unsafe { get_atom(xconn, atom_name) }
.expect("Failed to get atom for `WindowType`")
unsafe { xconn.get_atom_unchecked(atom_name) }
}
}
impl XConnection {
pub fn get_wm_hints(&self, window: ffi::Window) -> Result<XSmartPointer<ffi::XWMHints>, XError> {
let wm_hints = unsafe { (self.xlib.XGetWMHints)(self.display, window) };
self.check_errors()?;
let wm_hints = if wm_hints.is_null() {
self.alloc_wm_hints()
} else {
XSmartPointer::new(self, wm_hints).unwrap()
};
Ok(wm_hints)
}
pub fn set_wm_hints(&self, window: ffi::Window, wm_hints: XSmartPointer<ffi::XWMHints>) -> Flusher {
unsafe {
(self.xlib.XSetWMHints)(
self.display,
window,
wm_hints.ptr,
);
}
Flusher::new(self)
}
}

View file

@ -1,44 +1,12 @@
use std::str;
use super::*;
use events::ModifiersState;
pub unsafe fn select_xinput_events(
xconn: &Arc<XConnection>,
window: c_ulong,
device_id: c_int,
mask: i32,
) -> Flusher {
let mut event_mask = ffi::XIEventMask {
deviceid: device_id,
mask: &mask as *const _ as *mut c_uchar,
mask_len: mem::size_of_val(&mask) as c_int,
};
(xconn.xinput2.XISelectEvents)(
xconn.display,
window,
&mut event_mask as *mut ffi::XIEventMask,
1, // number of masks to read from pointer above
);
Flusher::new(xconn)
}
#[allow(dead_code)]
pub unsafe fn select_xkb_events(
xconn: &Arc<XConnection>,
device_id: c_uint,
mask: c_ulong,
) -> Option<Flusher> {
let status = (xconn.xlib.XkbSelectEvents)(
xconn.display,
device_id,
mask,
mask,
);
if status == ffi::True {
Some(Flusher::new(xconn))
} else {
None
}
}
// A base buffer size of 1kB uses a negligible amount of RAM while preventing us from having to
// re-allocate (and make another round-trip) in the *vast* majority of cases.
// To test if `lookup_utf8` works correctly, set this to 1.
const TEXT_BUFFER_SIZE: usize = 1024;
impl From<ffi::XIModifierState> for ModifiersState {
fn from(mods: ffi::XIModifierState) -> Self {
@ -53,17 +21,17 @@ impl From<ffi::XIModifierState> for ModifiersState {
}
pub struct PointerState<'a> {
xconn: &'a Arc<XConnection>,
_root: ffi::Window,
_child: ffi::Window,
_root_x: c_double,
_root_y: c_double,
_win_x: c_double,
_win_y: c_double,
_buttons: ffi::XIButtonState,
xconn: &'a XConnection,
root: ffi::Window,
child: ffi::Window,
root_x: c_double,
root_y: c_double,
win_x: c_double,
win_y: c_double,
buttons: ffi::XIButtonState,
modifiers: ffi::XIModifierState,
_group: ffi::XIGroupState,
_relative_to_window: bool,
group: ffi::XIGroupState,
relative_to_window: bool,
}
impl<'a> PointerState<'a> {
@ -74,114 +42,115 @@ impl<'a> PointerState<'a> {
impl<'a> Drop for PointerState<'a> {
fn drop(&mut self) {
unsafe {
// This is why you need to read the docs carefully...
(self.xconn.xlib.XFree)(self._buttons.mask as _);
if !self.buttons.mask.is_null() {
unsafe {
// This is why you need to read the docs carefully...
(self.xconn.xlib.XFree)(self.buttons.mask as _);
}
}
}
}
pub unsafe fn query_pointer(
xconn: &Arc<XConnection>,
window: ffi::Window,
device_id: c_int,
) -> Result<PointerState, XError> {
let mut root_return = mem::uninitialized();
let mut child_return = mem::uninitialized();
let mut root_x_return = mem::uninitialized();
let mut root_y_return = mem::uninitialized();
let mut win_x_return = mem::uninitialized();
let mut win_y_return = mem::uninitialized();
let mut buttons_return = mem::uninitialized();
let mut modifiers_return = mem::uninitialized();
let mut group_return = mem::uninitialized();
impl XConnection {
pub fn select_xinput_events(&self, window: c_ulong, device_id: c_int, mask: i32) -> Flusher {
let mut event_mask = ffi::XIEventMask {
deviceid: device_id,
mask: &mask as *const _ as *mut c_uchar,
mask_len: mem::size_of_val(&mask) as c_int,
};
unsafe {
(self.xinput2.XISelectEvents)(
self.display,
window,
&mut event_mask as *mut ffi::XIEventMask,
1, // number of masks to read from pointer above
);
}
Flusher::new(self)
}
let relative_to_window = (xconn.xinput2.XIQueryPointer)(
xconn.display,
device_id,
window,
&mut root_return,
&mut child_return,
&mut root_x_return,
&mut root_y_return,
&mut win_x_return,
&mut win_y_return,
&mut buttons_return,
&mut modifiers_return,
&mut group_return,
) == ffi::True;
#[allow(dead_code)]
pub fn select_xkb_events(&self, device_id: c_uint, mask: c_ulong) -> Option<Flusher> {
let status = unsafe {
(self.xlib.XkbSelectEvents)(
self.display,
device_id,
mask,
mask,
)
};
if status == ffi::True {
Some(Flusher::new(self))
} else {
None
}
}
xconn.check_errors()?;
pub fn query_pointer(&self, window: ffi::Window, device_id: c_int) -> Result<PointerState, XError> {
unsafe {
let mut pointer_state: PointerState = mem::uninitialized();
pointer_state.xconn = self;
pointer_state.relative_to_window = (self.xinput2.XIQueryPointer)(
self.display,
device_id,
window,
&mut pointer_state.root,
&mut pointer_state.child,
&mut pointer_state.root_x,
&mut pointer_state.root_y,
&mut pointer_state.win_x,
&mut pointer_state.win_y,
&mut pointer_state.buttons,
&mut pointer_state.modifiers,
&mut pointer_state.group,
) == ffi::True;
if let Err(err) = self.check_errors() {
// Running the destrutor would be bad news for us...
mem::forget(pointer_state);
Err(err)
} else {
Ok(pointer_state)
}
}
}
Ok(PointerState {
xconn,
_root: root_return,
_child: child_return,
_root_x: root_x_return,
_root_y: root_y_return,
_win_x: win_x_return,
_win_y: win_y_return,
_buttons: buttons_return,
modifiers: modifiers_return,
_group: group_return,
_relative_to_window: relative_to_window,
})
}
fn lookup_utf8_inner(
&self,
ic: ffi::XIC,
key_event: &mut ffi::XKeyEvent,
buffer: &mut [u8],
) -> (ffi::KeySym, ffi::Status, c_int) {
let mut keysym: ffi::KeySym = 0;
let mut status: ffi::Status = 0;
let count = unsafe {
(self.xlib.Xutf8LookupString)(
ic,
key_event,
buffer.as_mut_ptr() as *mut c_char,
buffer.len() as c_int,
&mut keysym,
&mut status,
)
};
(keysym, status, count)
}
unsafe fn lookup_utf8_inner(
xconn: &Arc<XConnection>,
ic: ffi::XIC,
key_event: &mut ffi::XKeyEvent,
buffer: &mut [u8],
) -> (ffi::KeySym, ffi::Status, c_int) {
let mut keysym: ffi::KeySym = 0;
let mut status: ffi::Status = 0;
let count = (xconn.xlib.Xutf8LookupString)(
ic,
key_event,
buffer.as_mut_ptr() as *mut c_char,
buffer.len() as c_int,
&mut keysym,
&mut status,
);
(keysym, status, count)
}
// A base buffer size of 1kB uses a negligible amount of RAM while preventing us from having to
// re-allocate (and make another round-trip) in the *vast* majority of cases.
// To test if lookup_utf8 works correctly, set this to 1.
const TEXT_BUFFER_SIZE: usize = 1024;
pub unsafe fn lookup_utf8(
xconn: &Arc<XConnection>,
ic: ffi::XIC,
key_event: &mut ffi::XKeyEvent,
) -> String {
let mut buffer: [u8; TEXT_BUFFER_SIZE] = mem::uninitialized();
let (_, status, count) = lookup_utf8_inner(
xconn,
ic,
key_event,
&mut buffer,
);
// The buffer overflowed, so we'll make a new one on the heap.
if status == ffi::XBufferOverflow {
let mut buffer = Vec::with_capacity(count as usize);
buffer.set_len(count as usize);
let (_, _, new_count) = lookup_utf8_inner(
xconn,
ic,
key_event,
&mut buffer,
);
debug_assert_eq!(count, new_count);
str::from_utf8(&buffer[..count as usize])
.unwrap_or("")
.to_string()
} else {
str::from_utf8(&buffer[..count as usize])
.unwrap_or("")
.to_string()
pub fn lookup_utf8(&self, ic: ffi::XIC, key_event: &mut ffi::XKeyEvent) -> String {
let mut buffer: [u8; TEXT_BUFFER_SIZE] = unsafe { mem::uninitialized() };
let (_, status, count) = self.lookup_utf8_inner(ic, key_event, &mut buffer);
// The buffer overflowed, so we'll make a new one on the heap.
if status == ffi::XBufferOverflow {
let mut buffer = Vec::with_capacity(count as usize);
unsafe { buffer.set_len(count as usize) };
let (_, _, new_count) = self.lookup_utf8_inner(ic, key_event, &mut buffer);
debug_assert_eq!(count, new_count);
str::from_utf8(&buffer[..count as usize])
.unwrap_or("")
.to_string()
} else {
str::from_utf8(&buffer[..count as usize])
.unwrap_or("")
.to_string()
}
}
}

View file

@ -0,0 +1,62 @@
use std::ops::{Deref, DerefMut};
use super::*;
pub struct XSmartPointer<'a, T> {
xconn: &'a XConnection,
pub ptr: *mut T,
}
impl<'a, T> XSmartPointer<'a, T> {
// You're responsible for only passing things to this that should be XFree'd.
// Returns None if ptr is null.
pub fn new(xconn: &'a XConnection, ptr: *mut T) -> Option<Self> {
if !ptr.is_null() {
Some(XSmartPointer {
xconn,
ptr,
})
} else {
None
}
}
}
impl<'a, T> Deref for XSmartPointer<'a, T> {
type Target = T;
fn deref(&self) -> &T {
unsafe { &*self.ptr }
}
}
impl<'a, T> DerefMut for XSmartPointer<'a, T> {
fn deref_mut(&mut self) -> &mut T {
unsafe { &mut *self.ptr }
}
}
impl<'a, T> Drop for XSmartPointer<'a, T> {
fn drop(&mut self) {
unsafe {
(self.xconn.xlib.XFree)(self.ptr as *mut _);
}
}
}
impl XConnection {
pub fn alloc_class_hint(&self) -> XSmartPointer<ffi::XClassHint> {
XSmartPointer::new(self, unsafe { (self.xlib.XAllocClassHint)() })
.expect("`XAllocClassHint` returned null; out of memory")
}
pub fn alloc_size_hints(&self) -> XSmartPointer<ffi::XSizeHints> {
XSmartPointer::new(self, unsafe { (self.xlib.XAllocSizeHints)() })
.expect("`XAllocSizeHints` returned null; out of memory")
}
pub fn alloc_wm_hints(&self) -> XSmartPointer<ffi::XWMHints> {
XSmartPointer::new(self, unsafe { (self.xlib.XAllocWMHints)() })
.expect("`XAllocWMHints` returned null; out of memory")
}
}

View file

@ -2,180 +2,80 @@
// *results may vary
mod atom;
mod client_msg;
mod format;
mod geometry;
mod hint;
mod icon;
mod input;
mod memory;
mod randr;
mod window_property;
mod wm;
pub use self::atom::*;
pub use self::client_msg::*;
pub use self::format::*;
pub use self::geometry::*;
pub use self::hint::*;
pub use self::icon::*;
pub use self::input::*;
pub use self::memory::*;
pub use self::randr::*;
pub use self::window_property::*;
pub use self::wm::*;
use std::mem;
use std::ptr;
use std::str;
use std::sync::Arc;
use std::ops::{Deref, DerefMut};
use std::os::raw::*;
use super::{ffi, XConnection, XError};
// This isn't actually the number of the bits in the format.
// X11 does a match on this value to determine which type to call sizeof on.
// Thus, we use 32 for c_long, since 32 maps to c_long which maps to 64.
// ...if that sounds confusing, then you know why this enum is here.
#[derive(Debug, Copy, Clone)]
pub enum Format {
Char = 8,
Short = 16,
Long = 32,
}
impl Format {
pub fn from_format(format: usize) -> Option<Self> {
match format {
8 => Some(Format::Char),
16 => Some(Format::Short),
32 => Some(Format::Long),
_ => None,
}
}
pub fn is_same_size_as<T>(&self) -> bool {
mem::size_of::<T>() == self.get_actual_size()
}
pub fn get_actual_size(&self) -> usize {
match self {
&Format::Char => mem::size_of::<c_char>(),
&Format::Short => mem::size_of::<c_short>(),
&Format::Long => mem::size_of::<c_long>(),
}
}
}
pub struct XSmartPointer<'a, T> {
xconn: &'a Arc<XConnection>,
pub ptr: *mut T,
}
impl<'a, T> XSmartPointer<'a, T> {
// You're responsible for only passing things to this that should be XFree'd.
// Returns None if ptr is null.
pub fn new(xconn: &'a Arc<XConnection>, ptr: *mut T) -> Option<Self> {
if !ptr.is_null() {
Some(XSmartPointer {
xconn,
ptr,
})
} else {
None
}
}
}
impl<'a, T> Deref for XSmartPointer<'a, T> {
type Target = T;
fn deref(&self) -> &T {
unsafe { &*self.ptr }
}
}
impl<'a, T> DerefMut for XSmartPointer<'a, T> {
fn deref_mut(&mut self) -> &mut T {
unsafe { &mut *self.ptr }
}
}
impl<'a, T> Drop for XSmartPointer<'a, T> {
fn drop(&mut self) {
unsafe {
(self.xconn.xlib.XFree)(self.ptr as *mut _);
}
}
}
// This is impoartant, so pay attention!
// Xlib has an output buffer, and tries to hide the async nature of X from you.
// This buffer contains the requests you make, and is flushed under various circumstances:
// 1. XPending, XNextEvent, and XWindowEvent flush "as needed"
// 2. XFlush explicitly flushes
// 3. XSync flushes and blocks until all requests are responded to
// 4. Calls that have a return dependent on a response (i.e. XGetWindowProperty) sync internally.
// When in doubt, check the X11 source; if a function calls _XReply, it flushes and waits.
// All util functions that abstract an async function will return a Flusher.
pub unsafe fn flush_requests(xconn: &Arc<XConnection>) -> Result<(), XError> {
(xconn.xlib.XFlush)(xconn.display);
//println!("XFlush");
// This isn't necessarily a useful time to check for errors (since our request hasn't
// necessarily been processed yet)
xconn.check_errors()
}
pub unsafe fn sync_with_server(xconn: &Arc<XConnection>) -> Result<(), XError> {
(xconn.xlib.XSync)(xconn.display, ffi::False);
//println!("XSync");
xconn.check_errors()
}
#[must_use = "This request was made asynchronously, and is still in the output buffer. You must explicitly choose to either `.flush()` (empty the output buffer, sending the request now) or `.queue()` (wait to send the request, allowing you to continue to add more requests without additional round-trips). For more information, see the documentation for `util::flush_requests`."]
pub struct Flusher<'a> {
xconn: &'a Arc<XConnection>,
xconn: &'a XConnection,
}
impl<'a> Flusher<'a> {
pub fn new(xconn: &'a Arc<XConnection>) -> Self {
pub fn new(xconn: &'a XConnection) -> Self {
Flusher { xconn }
}
// "I want this request sent now!"
pub fn flush(self) -> Result<(), XError> {
unsafe { flush_requests(self.xconn) }
self.xconn.flush_requests()
}
// "I want the response now too!"
pub fn sync(self) -> Result<(), XError> {
self.xconn.sync_with_server()
}
// "I'm aware that this request hasn't been sent, and I'm okay with waiting."
pub fn queue(self) {}
}
pub unsafe fn send_client_msg(
xconn: &Arc<XConnection>,
window: c_ulong, // The window this is "about"; not necessarily this window
target_window: c_ulong, // The window we're sending to
message_type: ffi::Atom,
event_mask: Option<c_long>,
data: (c_long, c_long, c_long, c_long, c_long),
) -> Flusher {
let mut event: ffi::XClientMessageEvent = mem::uninitialized();
event.type_ = ffi::ClientMessage;
event.display = xconn.display;
event.window = window;
event.message_type = message_type;
event.format = Format::Long as c_int;
event.data = ffi::ClientMessageData::new();
event.data.set_long(0, data.0);
event.data.set_long(1, data.1);
event.data.set_long(2, data.2);
event.data.set_long(3, data.3);
event.data.set_long(4, data.4);
impl XConnection {
// This is impoartant, so pay attention!
// Xlib has an output buffer, and tries to hide the async nature of X from you.
// This buffer contains the requests you make, and is flushed under various circumstances:
// 1. `XPending`, `XNextEvent`, and `XWindowEvent` flush "as needed"
// 2. `XFlush` explicitly flushes
// 3. `XSync` flushes and blocks until all requests are responded to
// 4. Calls that have a return dependent on a response (i.e. `XGetWindowProperty`) sync internally.
// When in doubt, check the X11 source; if a function calls `_XReply`, it flushes and waits.
// All util functions that abstract an async function will return a `Flusher`.
pub fn flush_requests(&self) -> Result<(), XError> {
unsafe { (self.xlib.XFlush)(self.display) };
//println!("XFlush");
// This isn't necessarily a useful time to check for errors (since our request hasn't
// necessarily been processed yet)
self.check_errors()
}
let event_mask = event_mask.unwrap_or(ffi::NoEventMask);
(xconn.xlib.XSendEvent)(
xconn.display,
target_window,
ffi::False,
event_mask,
&mut event.into(),
);
Flusher::new(xconn)
pub fn sync_with_server(&self) -> Result<(), XError> {
unsafe { (self.xlib.XSync)(self.display, ffi::False) };
//println!("XSync");
self.check_errors()
}
}

View file

@ -60,25 +60,23 @@ pub fn calc_dpi_factor(
((ppmm * (12.0 * 25.4 / 96.0)).round() / 12.0).max(1.0)
}
pub unsafe fn get_output_info(
xconn: &Arc<XConnection>,
resources: *mut XRRScreenResources,
repr: &MonitorRepr,
) -> (String, f32) {
let output_info = (xconn.xrandr.XRRGetOutputInfo)(
xconn.display,
resources,
repr.get_output(),
);
let name_slice = slice::from_raw_parts(
(*output_info).name as *mut u8,
(*output_info).nameLen as usize,
);
let name = String::from_utf8_lossy(name_slice).into();
let hidpi_factor = calc_dpi_factor(
repr.get_dimensions(),
((*output_info).mm_width as u64, (*output_info).mm_height as u64),
) as f32;
(xconn.xrandr.XRRFreeOutputInfo)(output_info);
(name, hidpi_factor)
impl XConnection {
pub unsafe fn get_output_info(&self, resources: *mut XRRScreenResources, repr: &MonitorRepr) -> (String, f32) {
let output_info = (self.xrandr.XRRGetOutputInfo)(
self.display,
resources,
repr.get_output(),
);
let name_slice = slice::from_raw_parts(
(*output_info).name as *mut u8,
(*output_info).nameLen as usize,
);
let name = String::from_utf8_lossy(name_slice).into();
let hidpi_factor = calc_dpi_factor(
repr.get_dimensions(),
((*output_info).mm_width as u64, (*output_info).mm_height as u64),
) as f32;
(self.xrandr.XRRFreeOutputInfo)(output_info);
(name, hidpi_factor)
}
}

View file

@ -1,5 +1,4 @@
use std;
use std::fmt::Debug;
use super::*;
@ -25,139 +24,121 @@ impl GetPropertyError {
}
// Number of 32-bit chunks to retrieve per iteration of get_property's inner loop.
// To test if get_property works correctly, set this to 1.
// To test if `get_property` works correctly, set this to 1.
const PROPERTY_BUFFER_SIZE: c_long = 1024; // 4k of RAM ought to be enough for anyone!
pub unsafe fn get_property<T: Debug + Clone>(
xconn: &Arc<XConnection>,
window: c_ulong,
property: ffi::Atom,
property_type: ffi::Atom,
) -> Result<Vec<T>, GetPropertyError> {
let mut data = Vec::new();
let mut offset = 0;
let mut done = false;
while !done {
let mut actual_type: ffi::Atom = mem::uninitialized();
let mut actual_format: c_int = mem::uninitialized();
let mut quantity_returned: c_ulong = mem::uninitialized();
let mut bytes_after: c_ulong = mem::uninitialized();
let mut buf: *mut c_uchar = ptr::null_mut();
(xconn.xlib.XGetWindowProperty)(
xconn.display,
window,
property,
// This offset is in terms of 32-bit chunks.
offset,
// This is the quanity of 32-bit chunks to receive at once.
PROPERTY_BUFFER_SIZE,
ffi::False,
property_type,
&mut actual_type,
&mut actual_format,
// This is the quantity of items we retrieved in our format, NOT of 32-bit chunks!
&mut quantity_returned,
// ...and this is a quantity of bytes. So, this function deals in 3 different units.
&mut bytes_after,
&mut buf,
);
if let Err(e) = xconn.check_errors() {
return Err(GetPropertyError::XError(e));
}
if actual_type != property_type {
return Err(GetPropertyError::TypeMismatch(actual_type));
}
let format_mismatch = Format::from_format(actual_format as _)
.map(|actual_format| !actual_format.is_same_size_as::<T>())
// This won't actually be reached; the XError condition above is triggered first.
.unwrap_or(true);
if format_mismatch {
return Err(GetPropertyError::FormatMismatch(actual_format));
}
if !buf.is_null() {
offset += PROPERTY_BUFFER_SIZE;
let new_data = std::slice::from_raw_parts(
buf as *mut T,
quantity_returned as usize,
);
/*println!(
"XGetWindowProperty prop:{:?} fmt:{:02} len:{:02} off:{:02} out:{:02}, buf:{:?}",
property,
mem::size_of::<T>() * 8,
data.len(),
offset,
quantity_returned,
new_data,
);*/
data.extend_from_slice(&new_data);
// Fun fact: XGetWindowProperty allocates one extra byte at the end.
(xconn.xlib.XFree)(buf as _); // Don't try to access new_data after this.
} else {
return Err(GetPropertyError::NothingAllocated);
}
done = bytes_after == 0;
}
Ok(data)
}
#[derive(Debug)]
pub enum PropMode {
Replace = ffi::PropModeReplace as isize,
_Prepend = ffi::PropModePrepend as isize,
_Append = ffi::PropModeAppend as isize,
Prepend = ffi::PropModePrepend as isize,
Append = ffi::PropModeAppend as isize,
}
#[derive(Debug, Clone)]
pub struct InvalidFormat {
format_used: Format,
size_passed: usize,
size_expected: usize,
}
impl XConnection {
pub fn get_property<T: Formattable>(
&self,
window: c_ulong,
property: ffi::Atom,
property_type: ffi::Atom,
) -> Result<Vec<T>, GetPropertyError> {
let mut data = Vec::new();
let mut offset = 0;
pub unsafe fn change_property<'a, T: Debug>(
xconn: &'a Arc<XConnection>,
window: c_ulong,
property: ffi::Atom,
property_type: ffi::Atom,
format: Format,
mode: PropMode,
new_value: &[T],
) -> Flusher<'a> {
if !format.is_same_size_as::<T>() {
panic!(format!(
"[winit developer error] Incorrect usage of `util::change_property`: {:#?}",
InvalidFormat {
format_used: format,
size_passed: mem::size_of::<T>() * 8,
size_expected: format.get_actual_size() * 8,
},
));
let mut done = false;
while !done {
unsafe {
let mut actual_type: ffi::Atom = mem::uninitialized();
let mut actual_format: c_int = mem::uninitialized();
let mut quantity_returned: c_ulong = mem::uninitialized();
let mut bytes_after: c_ulong = mem::uninitialized();
let mut buf: *mut c_uchar = ptr::null_mut();
(self.xlib.XGetWindowProperty)(
self.display,
window,
property,
// This offset is in terms of 32-bit chunks.
offset,
// This is the quanity of 32-bit chunks to receive at once.
PROPERTY_BUFFER_SIZE,
ffi::False,
property_type,
&mut actual_type,
&mut actual_format,
// This is the quantity of items we retrieved in our format, NOT of 32-bit chunks!
&mut quantity_returned,
// ...and this is a quantity of bytes. So, this function deals in 3 different units.
&mut bytes_after,
&mut buf,
);
if let Err(e) = self.check_errors() {
return Err(GetPropertyError::XError(e));
}
if actual_type != property_type {
return Err(GetPropertyError::TypeMismatch(actual_type));
}
let format_mismatch = Format::from_format(actual_format as _) != Some(T::FORMAT);
if format_mismatch {
return Err(GetPropertyError::FormatMismatch(actual_format));
}
if !buf.is_null() {
offset += PROPERTY_BUFFER_SIZE;
let new_data = std::slice::from_raw_parts(
buf as *mut T,
quantity_returned as usize,
);
/*println!(
"XGetWindowProperty prop:{:?} fmt:{:02} len:{:02} off:{:02} out:{:02}, buf:{:?}",
property,
mem::size_of::<T>() * 8,
data.len(),
offset,
quantity_returned,
new_data,
);*/
data.extend_from_slice(&new_data);
// Fun fact: XGetWindowProperty allocates one extra byte at the end.
(self.xlib.XFree)(buf as _); // Don't try to access new_data after this.
} else {
return Err(GetPropertyError::NothingAllocated);
}
done = bytes_after == 0;
}
}
Ok(data)
}
(xconn.xlib.XChangeProperty)(
xconn.display,
window,
property,
property_type,
format as c_int,
mode as c_int,
new_value.as_ptr() as *const c_uchar,
new_value.len() as c_int,
);
/*println!(
"XChangeProperty prop:{:?} val:{:?}",
property,
new_value,
);*/
Flusher::new(xconn)
pub fn change_property<'a, T: Formattable>(
&'a self,
window: c_ulong,
property: ffi::Atom,
property_type: ffi::Atom,
mode: PropMode,
new_value: &[T],
) -> Flusher<'a> {
debug_assert_eq!(mem::size_of::<T>(), T::FORMAT.get_actual_size());
unsafe {
(self.xlib.XChangeProperty)(
self.display,
window,
property,
property_type,
T::FORMAT as c_int,
mode as c_int,
new_value.as_ptr() as *const c_uchar,
new_value.len() as c_int,
);
}
/*println!(
"XChangeProperty prop:{:?} val:{:?}",
property,
new_value,
);*/
Flusher::new(self)
}
}

View file

@ -20,139 +20,122 @@ pub fn wm_name_is_one_of(names: &[&str]) -> bool {
}
}
pub fn update_cached_wm_info(xconn: &Arc<XConnection>, root: ffi::Window) {
*SUPPORTED_HINTS.lock() = self::get_supported_hints(xconn, root);
*WM_NAME.lock() = self::get_wm_name(xconn, root);
}
impl XConnection {
pub fn update_cached_wm_info(&self, root: ffi::Window) {
*SUPPORTED_HINTS.lock() = self.get_supported_hints(root);
*WM_NAME.lock() = self.get_wm_name(root);
}
fn get_supported_hints(xconn: &Arc<XConnection>, root: ffi::Window) -> Vec<ffi::Atom> {
let supported_atom = unsafe { self::get_atom(xconn, b"_NET_SUPPORTED\0") }
.expect("Failed to call XInternAtom (_NET_SUPPORTED)");
unsafe {
self::get_property(
xconn,
fn get_supported_hints(&self, root: ffi::Window) -> Vec<ffi::Atom> {
let supported_atom = unsafe { self.get_atom_unchecked(b"_NET_SUPPORTED\0") };
self.get_property(
root,
supported_atom,
ffi::XA_ATOM,
)
}.unwrap_or_else(|_| Vec::with_capacity(0))
}
).unwrap_or_else(|_| Vec::with_capacity(0))
}
fn get_wm_name(xconn: &Arc<XConnection>, root: ffi::Window) -> Option<String> {
let check_atom = unsafe { self::get_atom(xconn, b"_NET_SUPPORTING_WM_CHECK\0") }
.expect("Failed to call XInternAtom (_NET_SUPPORTING_WM_CHECK)");
let wm_name_atom = unsafe { self::get_atom(xconn, b"_NET_WM_NAME\0") }
.expect("Failed to call XInternAtom (_NET_WM_NAME)");
fn get_wm_name(&self, root: ffi::Window) -> Option<String> {
let check_atom = unsafe { self.get_atom_unchecked(b"_NET_SUPPORTING_WM_CHECK\0") };
let wm_name_atom = unsafe { self.get_atom_unchecked(b"_NET_WM_NAME\0") };
// Mutter/Muffin/Budgie doesn't have _NET_SUPPORTING_WM_CHECK in its _NET_SUPPORTED, despite
// it working and being supported. This has been reported upstream, but due to the
// inavailability of time machines, we'll just try to get _NET_SUPPORTING_WM_CHECK
// regardless of whether or not the WM claims to support it.
//
// Blackbox 0.70 also incorrectly reports not supporting this, though that appears to be fixed
// in 0.72.
/*if !supported_hints.contains(&check_atom) {
return None;
}*/
// Mutter/Muffin/Budgie doesn't have _NET_SUPPORTING_WM_CHECK in its _NET_SUPPORTED, despite
// it working and being supported. This has been reported upstream, but due to the
// inavailability of time machines, we'll just try to get _NET_SUPPORTING_WM_CHECK
// regardless of whether or not the WM claims to support it.
//
// Blackbox 0.70 also incorrectly reports not supporting this, though that appears to be fixed
// in 0.72.
/*if !supported_hints.contains(&check_atom) {
return None;
}*/
// IceWM (1.3.x and earlier) doesn't report supporting _NET_WM_NAME, but will nonetheless
// provide us with a value for it. Note that the unofficial 1.4 fork of IceWM works fine.
/*if !supported_hints.contains(&wm_name_atom) {
return None;
}*/
// IceWM (1.3.x and earlier) doesn't report supporting _NET_WM_NAME, but will nonetheless
// provide us with a value for it. Note that the unofficial 1.4 fork of IceWM works fine.
/*if !supported_hints.contains(&wm_name_atom) {
return None;
}*/
// Of the WMs tested, only xmonad and dwm fail to provide a WM name.
// Of the WMs tested, only xmonad and dwm fail to provide a WM name.
// Querying this property on the root window will give us the ID of a child window created by
// the WM.
let root_window_wm_check = {
let result = unsafe {
self::get_property(
xconn,
// Querying this property on the root window will give us the ID of a child window created by
// the WM.
let root_window_wm_check = {
let result = self.get_property(
root,
check_atom,
ffi::XA_WINDOW,
)
);
let wm_check = result
.ok()
.and_then(|wm_check| wm_check.get(0).cloned());
if let Some(wm_check) = wm_check {
wm_check
} else {
return None;
}
};
let wm_check = result
.ok()
.and_then(|wm_check| wm_check.get(0).cloned());
if let Some(wm_check) = wm_check {
wm_check
} else {
return None;
}
};
// Querying the same property on the child window we were given, we should get this child
// window's ID again.
let child_window_wm_check = {
let result = unsafe {
self::get_property(
xconn,
// Querying the same property on the child window we were given, we should get this child
// window's ID again.
let child_window_wm_check = {
let result = self.get_property(
root_window_wm_check,
check_atom,
ffi::XA_WINDOW,
)
);
let wm_check = result
.ok()
.and_then(|wm_check| wm_check.get(0).cloned());
if let Some(wm_check) = wm_check {
wm_check
} else {
return None;
}
};
let wm_check = result
.ok()
.and_then(|wm_check| wm_check.get(0).cloned());
if let Some(wm_check) = wm_check {
wm_check
} else {
// These values should be the same.
if root_window_wm_check != child_window_wm_check {
return None;
}
};
// These values should be the same.
if root_window_wm_check != child_window_wm_check {
return None;
}
// All of that work gives us a window ID that we can get the WM name from.
let wm_name = {
let utf8_string_atom = unsafe { self.get_atom_unchecked(b"UTF8_STRING\0") };
// All of that work gives us a window ID that we can get the WM name from.
let wm_name = {
let utf8_string_atom = unsafe { self::get_atom(xconn, b"UTF8_STRING\0") }
.expect("Failed to call XInternAtom (UTF8_STRING)");
let result = unsafe {
self::get_property(
xconn,
let result = self.get_property(
root_window_wm_check,
wm_name_atom,
utf8_string_atom,
)
};
);
// IceWM requires this. IceWM was also the only WM tested that returns a null-terminated
// string. For more fun trivia, IceWM is also unique in including version and uname
// information in this string (this means you'll have to be careful if you want to match
// against it, though).
// The unofficial 1.4 fork of IceWM still includes the extra details, but properly
// returns a UTF8 string that isn't null-terminated.
let no_utf8 = if let Err(ref err) = result {
err.is_actual_property_type(ffi::XA_STRING)
} else {
false
};
// IceWM requires this. IceWM was also the only WM tested that returns a null-terminated
// string. For more fun trivia, IceWM is also unique in including version and uname
// information in this string (this means you'll have to be careful if you want to match
// against it, though).
// The unofficial 1.4 fork of IceWM still includes the extra details, but properly
// returns a UTF8 string that isn't null-terminated.
let no_utf8 = if let Err(ref err) = result {
err.is_actual_property_type(ffi::XA_STRING)
} else {
false
};
if no_utf8 {
unsafe {
self::get_property(
xconn,
if no_utf8 {
self.get_property(
root_window_wm_check,
wm_name_atom,
ffi::XA_STRING,
)
} else {
result
}
} else {
result
}
}.ok();
}.ok();
wm_name.and_then(|wm_name| String::from_utf8(wm_name).ok())
wm_name.and_then(|wm_name| String::from_utf8(wm_name).ok())
}
}

View file

@ -169,15 +169,12 @@ impl Window2 {
// Enable drag and drop (TODO: extend API to make this toggleable)
unsafe {
let dnd_aware_atom = util::get_atom(xconn, b"XdndAware\0")
.expect("Failed to call XInternAtom (XdndAware)");
let dnd_aware_atom = xconn.get_atom_unchecked(b"XdndAware\0");
let version = &[5 as c_ulong]; // Latest version; hasn't changed since 2002
util::change_property(
xconn,
xconn.change_property(
x_window.window,
dnd_aware_atom,
ffi::XA_ATOM,
util::Format::Long,
util::PropMode::Replace,
version,
)
@ -185,11 +182,6 @@ impl Window2 {
// WM_CLASS must be set *before* mapping the window, as per ICCCM!
{
let mut class_hints = {
let class_hints = unsafe { (xconn.xlib.XAllocClassHint)() };
util::XSmartPointer::new(xconn, class_hints)
}.expect("`XAllocClassHint` returned null; out of memory");
let (class, instance) = if let Some((instance, class)) = pl_attribs.class {
let instance = CString::new(instance.as_str())
.expect("`WM_CLASS` instance contained null byte");
@ -216,14 +208,15 @@ impl Window2 {
(instance, class)
};
(*class_hints).res_name = class.as_ptr() as *mut c_char;
(*class_hints).res_class = instance.as_ptr() as *mut c_char;
let mut class_hint = xconn.alloc_class_hint();
(*class_hint).res_name = class.as_ptr() as *mut c_char;
(*class_hint).res_class = instance.as_ptr() as *mut c_char;
unsafe {
(xconn.xlib.XSetClassHint)(
xconn.display,
x_window.window,
class_hints.ptr,
class_hint.ptr,
);
}//.queue();
}
@ -241,10 +234,7 @@ impl Window2 {
// set size hints
{
let mut size_hints = {
let size_hints = unsafe { (xconn.xlib.XAllocSizeHints)() };
util::XSmartPointer::new(xconn, size_hints)
}.expect("XAllocSizeHints returned null; out of memory");
let mut size_hints = xconn.alloc_size_hints();
(*size_hints).flags = ffi::PSize;
(*size_hints).width = dimensions.0 as c_int;
(*size_hints).height = dimensions.1 as c_int;
@ -330,14 +320,7 @@ impl Window2 {
}
mask
};
unsafe {
util::select_xinput_events(
xconn,
x_window.window,
ffi::XIAllMasterDevices,
mask,
)
}.queue();
xconn.select_xinput_events(x_window.window, ffi::XIAllMasterDevices, mask).queue();
// These properties must be set after mapping
if window_attrs.maximized {
@ -372,7 +355,7 @@ impl Window2 {
}
// We never want to give the user a broken window, since by then, it's too late to handle.
unsafe { util::sync_with_server(xconn) }
xconn.sync_with_server()
.map(|_| window)
.map_err(|x_err| OsError(
format!("X server returned error while building window: {:?}", x_err)
@ -380,10 +363,8 @@ impl Window2 {
}
fn set_pid(xconn: &Arc<XConnection>, window: ffi::Window) -> Option<util::Flusher> {
let pid_atom = unsafe { util::get_atom(xconn, b"_NET_WM_PID\0") }
.expect("Failed to call XInternAtom (_NET_WM_PID)");
let client_machine_atom = unsafe { util::get_atom(xconn, b"WM_CLIENT_MACHINE\0") }
.expect("Failed to call XInternAtom (WM_CLIENT_MACHINE)");
let pid_atom = unsafe { xconn.get_atom_unchecked(b"_NET_WM_PID\0") };
let client_machine_atom = unsafe { xconn.get_atom_unchecked(b"WM_CLIENT_MACHINE\0") };
unsafe {
let (hostname, hostname_length) = {
// 64 would suffice for Linux, but 256 will be enough everywhere (as per SUSv2). For instance, this is
@ -396,21 +377,17 @@ impl Window2 {
let hostname_length = libc::strlen(hostname.as_ptr());
(hostname, hostname_length as usize)
};
util::change_property(
xconn,
xconn.change_property(
window,
pid_atom,
ffi::XA_CARDINAL,
util::Format::Long,
util::PropMode::Replace,
&[libc::getpid() as util::Cardinal],
).queue();
let flusher = util::change_property(
xconn,
let flusher = xconn.change_property(
window,
client_machine_atom,
ffi::XA_STRING,
util::Format::Char,
util::PropMode::Replace,
&hostname[0..hostname_length],
);
@ -423,50 +400,26 @@ impl Window2 {
window: ffi::Window,
window_type: util::WindowType,
) -> util::Flusher {
let hint_atom = unsafe { util::get_atom(xconn, b"_NET_WM_WINDOW_TYPE\0") }
.expect("Failed to call XInternAtom (_NET_WM_WINDOW_TYPE)");
let hint_atom = unsafe { xconn.get_atom_unchecked(b"_NET_WM_WINDOW_TYPE\0") };
let window_type_atom = window_type.as_atom(xconn);
unsafe {
util::change_property(
xconn,
window,
hint_atom,
ffi::XA_ATOM,
util::Format::Long,
util::PropMode::Replace,
&[window_type_atom],
)
}
xconn.change_property(
window,
hint_atom,
ffi::XA_ATOM,
util::PropMode::Replace,
&[window_type_atom],
)
}
pub fn set_urgent(&self, is_urgent: bool) {
let xconn = &self.x.display;
let mut wm_hints = {
let mut wm_hints = unsafe {
(xconn.xlib.XGetWMHints)(xconn.display, self.x.window)
};
xconn.check_errors().expect("`XGetWMHints` failed");
if wm_hints.is_null() {
wm_hints = unsafe { (xconn.xlib.XAllocWMHints)() };
}
util::XSmartPointer::new(xconn, wm_hints)
}.expect("`XAllocWMHints` returned null; out of memory");
let mut wm_hints = xconn.get_wm_hints(self.x.window).expect("`XGetWMHints` failed");
if is_urgent {
(*wm_hints).flags |= ffi::XUrgencyHint;
} else {
(*wm_hints).flags &= !ffi::XUrgencyHint;
}
unsafe {
(xconn.xlib.XSetWMHints)(
xconn.display,
self.x.window,
wm_hints.ptr,
);
util::flush_requests(xconn).expect("Failed to set urgency hint");
}
xconn.set_wm_hints(self.x.window, wm_hints).flush().expect("Failed to set urgency hint");
}
fn set_netwm(
@ -476,33 +429,25 @@ impl Window2 {
properties: (c_long, c_long, c_long, c_long),
operation: util::StateOperation
) -> util::Flusher {
let state_atom = unsafe { util::get_atom(xconn, b"_NET_WM_STATE\0") }
.expect("Failed to call XInternAtom (_NET_WM_STATE)");
unsafe {
util::send_client_msg(
xconn,
window,
root,
state_atom,
Some(ffi::SubstructureRedirectMask | ffi::SubstructureNotifyMask),
(
operation as c_long,
properties.0,
properties.1,
properties.2,
properties.3,
)
)
}
let state_atom = unsafe { xconn.get_atom_unchecked(b"_NET_WM_STATE\0") };
xconn.send_client_msg(
window,
root,
state_atom,
Some(ffi::SubstructureRedirectMask | ffi::SubstructureNotifyMask),
[
operation as c_long,
properties.0,
properties.1,
properties.2,
properties.3,
],
)
}
fn set_fullscreen_hint(&self, fullscreen: bool) -> util::Flusher {
let xconn = &self.x.display;
let fullscreen_atom = unsafe { util::get_atom(xconn, b"_NET_WM_STATE_FULLSCREEN\0") }
.expect("Failed to call XInternAtom (_NET_WM_STATE_FULLSCREEN)");
let fullscreen_atom = unsafe { xconn.get_atom_unchecked(b"_NET_WM_STATE_FULLSCREEN\0") };
Window2::set_netwm(
xconn,
self.x.window,
@ -548,12 +493,8 @@ impl Window2 {
fn set_maximized_inner(&self, maximized: bool) -> util::Flusher {
let xconn = &self.x.display;
let horz_atom = unsafe { util::get_atom(xconn, b"_NET_WM_STATE_MAXIMIZED_HORZ\0") }
.expect("Failed to call XInternAtom (_NET_WM_STATE_MAXIMIZED_HORZ)");
let vert_atom = unsafe { util::get_atom(xconn, b"_NET_WM_STATE_MAXIMIZED_VERT\0") }
.expect("Failed to call XInternAtom (_NET_WM_STATE_MAXIMIZED_VERT)");
let horz_atom = unsafe { xconn.get_atom_unchecked(b"_NET_WM_STATE_MAXIMIZED_HORZ\0") };
let vert_atom = unsafe { xconn.get_atom_unchecked(b"_NET_WM_STATE_MAXIMIZED_VERT\0") };
Window2::set_netwm(
xconn,
self.x.window,
@ -572,12 +513,8 @@ impl Window2 {
fn set_title_inner(&self, title: &str) -> util::Flusher {
let xconn = &self.x.display;
let wm_name_atom = unsafe { util::get_atom(xconn, b"_NET_WM_NAME\0") }
.expect("Failed to call XInternAtom (_NET_WM_NAME)");
let utf8_atom = unsafe { util::get_atom(xconn, b"UTF8_STRING\0") }
.expect("Failed to call XInternAtom (UTF8_STRING)");
let wm_name_atom = unsafe { xconn.get_atom_unchecked(b"_NET_WM_NAME\0") };
let utf8_atom = unsafe { xconn.get_atom_unchecked(b"UTF8_STRING\0") };
let title = CString::new(title).expect("Window title contained null byte");
unsafe {
(xconn.xlib.XStoreName)(
@ -585,13 +522,10 @@ impl Window2 {
self.x.window,
title.as_ptr() as *const c_char,
);
util::change_property(
xconn,
xconn.change_property(
self.x.window,
wm_name_atom,
utf8_atom,
util::Format::Char,
util::PropMode::Replace,
title.as_bytes_with_nul(),
)
@ -606,27 +540,20 @@ impl Window2 {
fn set_decorations_inner(&self, decorations: bool) -> util::Flusher {
let xconn = &self.x.display;
let wm_hints = unsafe { util::get_atom(xconn, b"_MOTIF_WM_HINTS\0") }
.expect("Failed to call XInternAtom (_MOTIF_WM_HINTS)");
unsafe {
util::change_property(
xconn,
self.x.window,
wm_hints,
wm_hints,
util::Format::Long,
util::PropMode::Replace,
&[
util::MWM_HINTS_DECORATIONS, // flags
0, // functions
decorations as c_ulong, // decorations
0, // input mode
0, // status
],
)
}
let wm_hints = unsafe { xconn.get_atom_unchecked(b"_MOTIF_WM_HINTS\0") };
xconn.change_property(
self.x.window,
wm_hints,
wm_hints,
util::PropMode::Replace,
&[
util::MWM_HINTS_DECORATIONS, // flags
0, // functions
decorations as c_ulong, // decorations
0, // input mode
0, // status
],
)
}
pub fn set_decorations(&self, decorations: bool) {
@ -638,10 +565,7 @@ impl Window2 {
fn set_always_on_top_inner(&self, always_on_top: bool) -> util::Flusher {
let xconn = &self.x.display;
let above_atom = unsafe { util::get_atom(xconn, b"_NET_WM_STATE_ABOVE\0") }
.expect("Failed to call XInternAtom (_NET_WM_STATE_ABOVE)");
let above_atom = unsafe { xconn.get_atom_unchecked(b"_NET_WM_STATE_ABOVE\0") };
Window2::set_netwm(
xconn,
self.x.window,
@ -659,42 +583,28 @@ impl Window2 {
fn set_icon_inner(&self, icon: Icon) -> util::Flusher {
let xconn = &self.x.display;
let icon_atom = unsafe { util::get_atom(xconn, b"_NET_WM_ICON\0") }
.expect("Failed to call XInternAtom (_NET_WM_ICON)");
let icon_atom = unsafe { xconn.get_atom_unchecked(b"_NET_WM_ICON\0") };
let data = icon.to_cardinals();
unsafe {
util::change_property(
xconn,
self.x.window,
icon_atom,
ffi::XA_CARDINAL,
util::Format::Long,
util::PropMode::Replace,
data.as_slice(),
)
}
xconn.change_property(
self.x.window,
icon_atom,
ffi::XA_CARDINAL,
util::PropMode::Replace,
data.as_slice(),
)
}
fn unset_icon_inner(&self) -> util::Flusher {
let xconn = &self.x.display;
let icon_atom = unsafe { util::get_atom(xconn, b"_NET_WM_ICON\0") }
.expect("Failed to call XInternAtom (_NET_WM_ICON)");
let icon_atom = unsafe { xconn.get_atom_unchecked(b"_NET_WM_ICON\0") };
let empty_data: [util::Cardinal; 0] = [];
unsafe {
util::change_property(
xconn,
self.x.window,
icon_atom,
ffi::XA_CARDINAL,
util::Format::Long,
util::PropMode::Replace,
&empty_data,
)
}
xconn.change_property(
self.x.window,
icon_atom,
ffi::XA_CARDINAL,
util::PropMode::Replace,
&empty_data,
)
}
pub fn set_window_icon(&self, icon: Option<Icon>) {
@ -707,7 +617,7 @@ impl Window2 {
pub fn show(&self) {
unsafe {
(self.x.display.xlib.XMapRaised)(self.x.display.display, self.x.window);
util::flush_requests(&self.x.display)
self.x.display.flush_requests()
.expect("Failed to call XMapRaised");
}
}
@ -715,17 +625,13 @@ impl Window2 {
pub fn hide(&self) {
unsafe {
(self.x.display.xlib.XUnmapWindow)(self.x.display.display, self.x.window);
util::flush_requests(&self.x.display)
self.x.display.flush_requests()
.expect("Failed to call XUnmapWindow");
}
}
fn update_cached_frame_extents(&self) {
let extents = util::get_frame_extents_heuristic(
&self.x.display,
self.x.window,
self.x.root,
);
let extents = self.x.display.get_frame_extents_heuristic(self.x.window, self.x.root);
(*self.shared_state.lock()).frame_extents = Some(extents);
}
@ -748,7 +654,7 @@ impl Window2 {
#[inline]
pub fn get_inner_position(&self) -> Option<(i32, i32)> {
unsafe { util::translate_coords(&self.x.display, self.x.window, self.x.root )}
self.x.display.translate_coords(self.x.window, self.x.root )
.ok()
.map(|coords| (coords.x_rel_root, coords.y_rel_root))
}
@ -773,13 +679,13 @@ impl Window2 {
x as c_int,
y as c_int,
);
util::flush_requests(&self.x.display)
self.x.display.flush_requests()
}.expect("Failed to call XMoveWindow");
}
#[inline]
pub fn get_inner_size(&self) -> Option<(u32, u32)> {
unsafe { util::get_geometry(&self.x.display, self.x.window) }
self.x.display.get_geometry(self.x.window)
.ok()
.map(|geo| (geo.width, geo.height))
}
@ -806,7 +712,7 @@ impl Window2 {
width as c_uint,
height as c_uint,
);
util::flush_requests(&self.x.display)
self.x.display.flush_requests()
}.expect("Failed to call XResizeWindow");
}
@ -815,14 +721,8 @@ impl Window2 {
{
let xconn = &self.x.display;
let size_hints = {
let size_hints = (xconn.xlib.XAllocSizeHints)();
util::XSmartPointer::new(&xconn, size_hints)
.expect("XAllocSizeHints returned null; out of memory")
};
let size_hints = xconn.alloc_size_hints();
let mut flags: c_long = mem::uninitialized();
(xconn.xlib.XGetWMNormalHints)(
xconn.display,
self.x.window,
@ -838,7 +738,7 @@ impl Window2 {
self.x.window,
size_hints.ptr,
);
util::flush_requests(xconn)?;
xconn.flush_requests()?;
Ok(())
}
@ -994,7 +894,7 @@ impl Window2 {
if cursor != 0 {
(self.x.display.xlib.XFreeCursor)(self.x.display.display, cursor);
}
util::flush_requests(&self.x.display).expect("Failed to set or free the cursor");
self.x.display.flush_requests().expect("Failed to set or free the cursor");
}
}
@ -1057,7 +957,7 @@ impl Window2 {
Grab => {
unsafe {
(self.x.display.xlib.XUngrabPointer)(self.x.display.display, ffi::CurrentTime);
util::flush_requests(&self.x.display).expect("Failed to call XUngrabPointer");
self.x.display.flush_requests().expect("Failed to call XUngrabPointer");
}
},
Normal => {},
@ -1123,7 +1023,7 @@ impl Window2 {
x,
y,
);
util::flush_requests(&self.x.display).map_err(|_| ())
self.x.display.flush_requests().map_err(|_| ())
}
}