winit-sonoma-fix/src/event_loop.rs
Robert Bragg 05484c5888
Android: rework backend to use android-activity crate (#2444)
This updates the Android backend to use the android-activity crate instead
of ndk-glue. This solves a few issues:
1. The backend is agnostic of the application's choice of Activity base
   class
2. Winit is no longer responsible for handling any Java synchronization
   details, since these are encapsulated by the design of
   android_activity
3. The backend no longer depends on global / static getters for state
   such as the native_window() which puts it in a better position to
   support running multiple activities within a single Android process.
4. Redraw requests are flagged, not queued, in a way that avoids taking
   priority over user events (resolves #2299)

To make it possible for application crates to avoid explicitly
depending on the `android-activity` crate (and avoid version conflicts)
this re-exports the android-activity crate under:

  `winit::platform::android::activity::*`

This also adds `android-native-activity` and `android-game-activity`
features that set the corresponding android-activity features.

Addresses: PR https://github.com/rust-windowing/winit/pull/1892
Addresses: PR https://github.com/rust-windowing/winit/pull/2307
Addresses: PR https://github.com/rust-windowing/winit/pull/2343

Addresses: #2293
Resolves: #2299

Co-authored-by: Markus Siglreithmaier <m.siglreith@gmail.com>

Co-authored-by: Markus Siglreithmaier <m.siglreith@gmail.com>
2022-11-10 17:55:19 +01:00

424 lines
15 KiB
Rust

//! The [`EventLoop`] struct and assorted supporting types, including
//! [`ControlFlow`].
//!
//! If you want to send custom events to the event loop, use
//! [`EventLoop::create_proxy`] to acquire an [`EventLoopProxy`] and call its
//! [`send_event`](`EventLoopProxy::send_event`) method.
//!
//! See the root-level documentation for information on how to create and use an event loop to
//! handle events.
use std::marker::PhantomData;
use std::ops::Deref;
use std::{error, fmt};
use instant::Instant;
use once_cell::sync::OnceCell;
use raw_window_handle::{HasRawDisplayHandle, RawDisplayHandle};
use crate::{event::Event, monitor::MonitorHandle, platform_impl};
/// Provides a way to retrieve events from the system and from the windows that were registered to
/// the events loop.
///
/// An `EventLoop` can be seen more or less as a "context". Calling [`EventLoop::new`]
/// initializes everything that will be required to create windows. For example on Linux creating
/// an event loop opens a connection to the X or Wayland server.
///
/// To wake up an `EventLoop` from a another thread, see the [`EventLoopProxy`] docs.
///
/// Note that this cannot be shared across threads (due to platform-dependant logic
/// forbidding it), as such it is neither [`Send`] nor [`Sync`]. If you need cross-thread access, the
/// [`Window`] created from this _can_ be sent to an other thread, and the
/// [`EventLoopProxy`] allows you to wake up an `EventLoop` from another thread.
///
/// [`Window`]: crate::window::Window
pub struct EventLoop<T: 'static> {
pub(crate) event_loop: platform_impl::EventLoop<T>,
pub(crate) _marker: PhantomData<*mut ()>, // Not Send nor Sync
}
/// Target that associates windows with an [`EventLoop`].
///
/// This type exists to allow you to create new windows while Winit executes
/// your callback. [`EventLoop`] will coerce into this type (`impl<T> Deref for
/// EventLoop<T>`), so functions that take this as a parameter can also take
/// `&EventLoop`.
pub struct EventLoopWindowTarget<T: 'static> {
pub(crate) p: platform_impl::EventLoopWindowTarget<T>,
pub(crate) _marker: PhantomData<*mut ()>, // Not Send nor Sync
}
/// Object that allows building the event loop.
///
/// This is used to make specifying options that affect the whole application
/// easier. But note that constructing multiple event loops is not supported.
#[derive(Default)]
pub struct EventLoopBuilder<T: 'static> {
pub(crate) platform_specific: platform_impl::PlatformSpecificEventLoopAttributes,
_p: PhantomData<T>,
}
impl EventLoopBuilder<()> {
/// Start building a new event loop.
#[inline]
pub fn new() -> Self {
Self::with_user_event()
}
}
impl<T> EventLoopBuilder<T> {
/// Start building a new event loop, with the given type as the user event
/// type.
#[inline]
pub fn with_user_event() -> Self {
Self {
platform_specific: Default::default(),
_p: PhantomData,
}
}
/// Builds a new event loop.
///
/// ***For cross-platform compatibility, the [`EventLoop`] must be created on the main thread,
/// and only once per application.***
///
/// Attempting to create the event loop on a different thread, or multiple event loops in
/// the same application, will panic. This restriction isn't
/// strictly necessary on all platforms, but is imposed to eliminate any nasty surprises when
/// porting to platforms that require it. `EventLoopBuilderExt::any_thread` functions are exposed
/// in the relevant [`platform`] module if the target platform supports creating an event loop on
/// any thread.
///
/// Calling this function will result in display backend initialisation.
///
/// ## Platform-specific
///
/// - **Linux:** Backend type can be controlled using an environment variable
/// `WINIT_UNIX_BACKEND`. Legal values are `x11` and `wayland`.
/// If it is not set, winit will try to connect to a Wayland connection, and if that fails,
/// will fall back on X11. If this variable is set with any other value, winit will panic.
/// - **Android:** Must be configured with an `AndroidApp` from `android_main()` by calling
/// [`.with_android_app(app)`] before calling `.build()`.
///
/// [`platform`]: crate::platform
#[cfg_attr(
target_os = "android",
doc = "[`.with_android_app(app)`]: crate::platform::android::EventLoopBuilderExtAndroid::with_android_app"
)]
#[cfg_attr(
not(target_os = "android"),
doc = "[`.with_android_app(app)`]: #only-available-on-android"
)]
#[inline]
pub fn build(&mut self) -> EventLoop<T> {
static EVENT_LOOP_CREATED: OnceCell<()> = OnceCell::new();
if EVENT_LOOP_CREATED.set(()).is_err() {
panic!("Creating EventLoop multiple times is not supported.");
}
// Certain platforms accept a mutable reference in their API.
#[allow(clippy::unnecessary_mut_passed)]
EventLoop {
event_loop: platform_impl::EventLoop::new(&mut self.platform_specific),
_marker: PhantomData,
}
}
}
impl<T> fmt::Debug for EventLoop<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.pad("EventLoop { .. }")
}
}
impl<T> fmt::Debug for EventLoopWindowTarget<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.pad("EventLoopWindowTarget { .. }")
}
}
/// Set by the user callback given to the [`EventLoop::run`] method.
///
/// Indicates the desired behavior of the event loop after [`Event::RedrawEventsCleared`] is emitted.
///
/// Defaults to [`Poll`].
///
/// ## Persistency
///
/// Almost every change is persistent between multiple calls to the event loop closure within a
/// given run loop. The only exception to this is [`ExitWithCode`] which, once set, cannot be unset.
/// Changes are **not** persistent between multiple calls to `run_return` - issuing a new call will
/// reset the control flow to [`Poll`].
///
/// [`ExitWithCode`]: Self::ExitWithCode
/// [`Poll`]: Self::Poll
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum ControlFlow {
/// When the current loop iteration finishes, immediately begin a new iteration regardless of
/// whether or not new events are available to process.
///
/// ## Platform-specific
///
/// - **Web:** Events are queued and usually sent when `requestAnimationFrame` fires but sometimes
/// the events in the queue may be sent before the next `requestAnimationFrame` callback, for
/// example when the scaling of the page has changed. This should be treated as an implementation
/// detail which should not be relied on.
Poll,
/// When the current loop iteration finishes, suspend the thread until another event arrives.
Wait,
/// When the current loop iteration finishes, suspend the thread until either another event
/// arrives or the given time is reached.
///
/// Useful for implementing efficient timers. Applications which want to render at the display's
/// native refresh rate should instead use [`Poll`] and the VSync functionality of a graphics API
/// to reduce odds of missed frames.
///
/// [`Poll`]: Self::Poll
WaitUntil(Instant),
/// Send a [`LoopDestroyed`] event and stop the event loop. This variant is *sticky* - once set,
/// `control_flow` cannot be changed from `ExitWithCode`, and any future attempts to do so will
/// result in the `control_flow` parameter being reset to `ExitWithCode`.
///
/// The contained number will be used as exit code. The [`Exit`] constant is a shortcut for this
/// with exit code 0.
///
/// ## Platform-specific
///
/// - **Android / iOS / WASM:** The supplied exit code is unused.
/// - **Unix:** On most Unix-like platforms, only the 8 least significant bits will be used,
/// which can cause surprises with negative exit values (`-42` would end up as `214`). See
/// [`std::process::exit`].
///
/// [`LoopDestroyed`]: Event::LoopDestroyed
/// [`Exit`]: ControlFlow::Exit
ExitWithCode(i32),
}
impl ControlFlow {
/// Alias for [`ExitWithCode`]`(0)`.
///
/// [`ExitWithCode`]: Self::ExitWithCode
#[allow(non_upper_case_globals)]
pub const Exit: Self = Self::ExitWithCode(0);
/// Sets this to [`Poll`].
///
/// [`Poll`]: Self::Poll
pub fn set_poll(&mut self) {
*self = Self::Poll;
}
/// Sets this to [`Wait`].
///
/// [`Wait`]: Self::Wait
pub fn set_wait(&mut self) {
*self = Self::Wait;
}
/// Sets this to [`WaitUntil`]`(instant)`.
///
/// [`WaitUntil`]: Self::WaitUntil
pub fn set_wait_until(&mut self, instant: Instant) {
*self = Self::WaitUntil(instant);
}
/// Sets this to [`ExitWithCode`]`(code)`.
///
/// [`ExitWithCode`]: Self::ExitWithCode
pub fn set_exit_with_code(&mut self, code: i32) {
*self = Self::ExitWithCode(code);
}
/// Sets this to [`Exit`].
///
/// [`Exit`]: Self::Exit
pub fn set_exit(&mut self) {
*self = Self::Exit;
}
}
impl Default for ControlFlow {
#[inline(always)]
fn default() -> Self {
Self::Poll
}
}
impl EventLoop<()> {
/// Alias for [`EventLoopBuilder::new().build()`].
///
/// [`EventLoopBuilder::new().build()`]: EventLoopBuilder::build
#[inline]
pub fn new() -> EventLoop<()> {
EventLoopBuilder::new().build()
}
}
impl Default for EventLoop<()> {
fn default() -> Self {
Self::new()
}
}
impl<T> EventLoop<T> {
#[deprecated = "Use `EventLoopBuilder::<T>::with_user_event().build()` instead."]
pub fn with_user_event() -> EventLoop<T> {
EventLoopBuilder::<T>::with_user_event().build()
}
/// Hijacks the calling thread and initializes the winit event loop with the provided
/// closure. Since the closure is `'static`, it must be a `move` closure if it needs to
/// access any data from the calling context.
///
/// See the [`ControlFlow`] docs for information on how changes to `&mut ControlFlow` impact the
/// event loop's behavior.
///
/// Any values not passed to this function will *not* be dropped.
///
/// ## Platform-specific
///
/// - **X11 / Wayland:** The program terminates with exit code 1 if the display server
/// disconnects.
///
/// [`ControlFlow`]: crate::event_loop::ControlFlow
#[inline]
pub fn run<F>(self, event_handler: F) -> !
where
F: 'static + FnMut(Event<'_, T>, &EventLoopWindowTarget<T>, &mut ControlFlow),
{
self.event_loop.run(event_handler)
}
/// Creates an [`EventLoopProxy`] that can be used to dispatch user events to the main event loop.
pub fn create_proxy(&self) -> EventLoopProxy<T> {
EventLoopProxy {
event_loop_proxy: self.event_loop.create_proxy(),
}
}
}
impl<T> Deref for EventLoop<T> {
type Target = EventLoopWindowTarget<T>;
fn deref(&self) -> &EventLoopWindowTarget<T> {
self.event_loop.window_target()
}
}
impl<T> EventLoopWindowTarget<T> {
/// Returns the list of all the monitors available on the system.
#[inline]
pub fn available_monitors(&self) -> impl Iterator<Item = MonitorHandle> {
self.p
.available_monitors()
.into_iter()
.map(|inner| MonitorHandle { inner })
}
/// Returns the primary monitor of the system.
///
/// Returns `None` if it can't identify any monitor as a primary one.
///
/// ## Platform-specific
///
/// **Wayland:** Always returns `None`.
#[inline]
pub fn primary_monitor(&self) -> Option<MonitorHandle> {
self.p
.primary_monitor()
.map(|inner| MonitorHandle { inner })
}
/// Change [`DeviceEvent`] filter mode.
///
/// Since the [`DeviceEvent`] capture can lead to high CPU usage for unfocused windows, winit
/// will ignore them by default for unfocused windows on Linux/BSD. This method allows changing
/// this filter at runtime to explicitly capture them again.
///
/// ## Platform-specific
///
/// - **Wayland / macOS / iOS / Android / Web:** Unsupported.
///
/// [`DeviceEvent`]: crate::event::DeviceEvent
pub fn set_device_event_filter(&self, _filter: DeviceEventFilter) {
#[cfg(any(
target_os = "linux",
target_os = "dragonfly",
target_os = "freebsd",
target_os = "netbsd",
target_os = "openbsd",
target_os = "windows"
))]
self.p.set_device_event_filter(_filter);
}
}
unsafe impl<T> HasRawDisplayHandle for EventLoopWindowTarget<T> {
/// Returns a [`raw_window_handle::RawDisplayHandle`] for the event loop.
fn raw_display_handle(&self) -> RawDisplayHandle {
self.p.raw_display_handle()
}
}
/// Used to send custom events to [`EventLoop`].
pub struct EventLoopProxy<T: 'static> {
event_loop_proxy: platform_impl::EventLoopProxy<T>,
}
impl<T: 'static> Clone for EventLoopProxy<T> {
fn clone(&self) -> Self {
Self {
event_loop_proxy: self.event_loop_proxy.clone(),
}
}
}
impl<T: 'static> EventLoopProxy<T> {
/// Send an event to the [`EventLoop`] from which this proxy was created. This emits a
/// `UserEvent(event)` event in the event loop, where `event` is the value passed to this
/// function.
///
/// Returns an `Err` if the associated [`EventLoop`] no longer exists.
///
/// [`UserEvent(event)`]: Event::UserEvent
pub fn send_event(&self, event: T) -> Result<(), EventLoopClosed<T>> {
self.event_loop_proxy.send_event(event)
}
}
impl<T: 'static> fmt::Debug for EventLoopProxy<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.pad("EventLoopProxy { .. }")
}
}
/// The error that is returned when an [`EventLoopProxy`] attempts to wake up an [`EventLoop`] that
/// no longer exists.
///
/// Contains the original event given to [`EventLoopProxy::send_event`].
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub struct EventLoopClosed<T>(pub T);
impl<T> fmt::Display for EventLoopClosed<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("Tried to wake up a closed `EventLoop`")
}
}
impl<T: fmt::Debug> error::Error for EventLoopClosed<T> {}
/// Filter controlling the propagation of device events.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
pub enum DeviceEventFilter {
/// Always filter out device events.
Always,
/// Filter out device events while the window is not focused.
Unfocused,
/// Report all device events regardless of window focus.
Never,
}
impl Default for DeviceEventFilter {
fn default() -> Self {
Self::Unfocused
}
}