rp-hal-boards/rp2040-hal/src/multicore.rs

272 lines
8.5 KiB
Rust
Raw Normal View History

//! Multicore support
//!
//! This module handles setup of the 2nd cpu core on the rp2040, which we refer to as core1.
//! It provides functionality for setting up the stack, and starting core1.
//!
//! The entrypoint for core1 can be any function that never returns, including closures.
//!
//! # Usage
//!
//! ```no_run
//! use rp2040_hal::{pac, gpio::Pins, sio::Sio, multicore::{Multicore, Stack}};
//!
//! static mut CORE1_STACK: Stack<4096> = Stack::new();
//!
//! fn core1_task() -> ! {
//! loop {}
//! }
//!
//! fn main() -> ! {
//! let mut pac = pac::Peripherals::take().unwrap();
//! let mut sio = Sio::new(pac.SIO);
//! // Other init code above this line
2022-05-08 20:14:40 +10:00
//! let mut mc = Multicore::new(&mut pac.PSM, &mut pac.PPB, &mut sio.fifo);
//! let cores = mc.cores();
//! let core1 = &mut cores[1];
2022-05-08 20:14:40 +10:00
//! let _test = core1.spawn(unsafe { &mut CORE1_STACK.mem }, core1_task);
//! // The rest of your application below this line
//! # loop {}
//! }
//!
//! ```
//!
//! For inter-processor communications, see [`crate::sio::SioFifo`] and [`crate::sio::Spinlock0`]
//!
//! For a detailed example, see [examples/multicore_fifo_blink.rs](https://github.com/rp-rs/rp-hal/tree/main/rp2040-hal/examples/multicore_fifo_blink.rs)
use core::mem::ManuallyDrop;
use core::sync::atomic::compiler_fence;
use core::sync::atomic::Ordering;
use crate::pac;
use crate::Sio;
/// Errors for multicore operations.
#[derive(Debug)]
pub enum Error {
/// Operation is invalid on this core.
InvalidCore,
2022-04-18 18:49:41 +08:00
/// Core was unresponsive to commands.
Unresponsive,
}
#[inline(always)]
fn install_stack_guard(stack_bottom: *mut usize) {
let core = unsafe { pac::CorePeripherals::steal() };
// Trap if MPU is already configured
if core.MPU.ctrl.read() != 0 {
cortex_m::asm::udf();
}
// The minimum we can protect is 32 bytes on a 32 byte boundary, so round up which will
// just shorten the valid stack range a tad.
let addr = (stack_bottom as u32 + 31) & !31;
// Mask is 1 bit per 32 bytes of the 256 byte range... clear the bit for the segment we want
let subregion_select = 0xff ^ (1 << ((addr >> 5) & 7));
unsafe {
core.MPU.ctrl.write(5); // enable mpu with background default map
core.MPU.rbar.write((addr & !0xff) | 0x8);
core.MPU.rasr.write(
1 // enable region
| (0x7 << 1) // size 2^(7 + 1) = 256
| (subregion_select << 8)
| 0x10000000, // XN = disable instruction fetch; no other bits means no permissions
);
}
}
#[inline(always)]
fn core1_setup(stack_bottom: *mut usize) {
install_stack_guard(stack_bottom);
// TODO: irq priorities
}
/// Multicore execution management.
pub struct Multicore<'p> {
cores: [Core<'p>; 2],
}
/// Data type for a properly aligned stack of N 32-bit (usize) words
#[repr(C, align(32))]
pub struct Stack<const SIZE: usize> {
/// Memory to be used for the stack
pub mem: [usize; SIZE],
}
impl<const SIZE: usize> Stack<SIZE> {
/// Construct a stack of length SIZE, initialized to 0
pub const fn new() -> Stack<SIZE> {
Stack { mem: [0; SIZE] }
}
}
impl<'p> Multicore<'p> {
/// Create a new |Multicore| instance.
pub fn new(
psm: &'p mut pac::PSM,
ppb: &'p mut pac::PPB,
sio: &'p mut crate::sio::SioFifo,
) -> Self {
Self {
cores: [
Core { inner: None },
Core {
inner: Some((psm, ppb, sio)),
},
],
}
}
/// Get the available |Core| instances.
pub fn cores(&mut self) -> &'p mut [Core] {
&mut self.cores
}
}
/// A handle for controlling a logical core.
pub struct Core<'p> {
inner: Option<(
&'p mut pac::PSM,
&'p mut pac::PPB,
&'p mut crate::sio::SioFifo,
)>,
}
impl<'p> Core<'p> {
/// Get the id of this core.
pub fn id(&self) -> u8 {
match self.inner {
None => 0,
Some(..) => 1,
}
}
/// Spawn a function on this core.
pub fn spawn<F>(&mut self, stack: &'static mut [usize], entry: F) -> Result<(), Error>
where
F: FnOnce() -> bad::Never + Send + 'static,
{
if let Some((psm, ppb, fifo)) = self.inner.as_mut() {
// The first two ignored `u64` parameters are there to take up all of the registers,
// which means that the rest of the arguments are taken from the stack,
// where we're able to put them from core 0.
extern "C" fn core1_startup<F: FnOnce() -> bad::Never>(
_: u64,
_: u64,
entry: &mut ManuallyDrop<F>,
stack_bottom: *mut usize,
) -> ! {
core1_setup(stack_bottom);
let entry = unsafe { ManuallyDrop::take(entry) };
// Signal that it's safe for core 0 to get rid of the original value now.
//
// We don't have any way to get at core 1's SIO without using `Peripherals::steal` right now,
// since svd2rust doesn't really support multiple cores properly.
let peripherals = unsafe { pac::Peripherals::steal() };
let mut sio = Sio::new(peripherals.SIO);
sio.fifo.write_blocking(1);
entry()
}
// Reset the core
psm.frce_off.modify(|_, w| w.proc1().set_bit());
while !psm.frce_off.read().proc1().bit_is_set() {
cortex_m::asm::nop();
}
psm.frce_off.modify(|_, w| w.proc1().clear_bit());
// Set up the stack
let mut stack_ptr = unsafe { stack.as_mut_ptr().add(stack.len()) };
// We don't want to drop this, since it's getting moved to the other core.
let mut entry = ManuallyDrop::new(entry);
// Push the arguments to `core1_startup` onto the stack.
unsafe {
// Push `stack_bottom`.
stack_ptr = stack_ptr.sub(1);
stack_ptr.cast::<*mut usize>().write(stack.as_mut_ptr());
// Push `entry`.
stack_ptr = stack_ptr.sub(1);
stack_ptr.cast::<&mut ManuallyDrop<F>>().write(&mut entry);
}
// Make sure the compiler does not reorder the stack writes after to after the
// below FIFO writes, which would result in them not being seen by the second
// core.
//
// From the compiler perspective, this doesn't guarantee that the second core
// actually sees those writes. However, we know that the RP2040 doesn't have
// memory caches, and writes happen in-order.
compiler_fence(Ordering::Release);
let vector_table = ppb.vtor.read().bits();
// After reset, core 1 is waiting to receive commands over FIFO.
// This is the sequence to have it jump to some code.
let cmd_seq = [
0,
0,
1,
vector_table as usize,
stack_ptr as usize,
core1_startup::<F> as usize,
];
let mut seq = 0;
let mut fails = 0;
loop {
let cmd = cmd_seq[seq] as u32;
if cmd == 0 {
fifo.drain();
cortex_m::asm::sev();
}
fifo.write_blocking(cmd);
let response = fifo.read_blocking();
if cmd == response {
seq += 1;
} else {
seq = 0;
fails += 1;
if fails > 16 {
// The second core isn't responding, and isn't going to take the entrypoint,
// so we have to drop it ourselves.
drop(ManuallyDrop::into_inner(entry));
return Err(Error::Unresponsive);
}
}
if seq >= cmd_seq.len() {
break;
}
}
// Wait until the other core has copied `entry` before returning.
fifo.read_blocking();
Ok(())
} else {
Err(Error::InvalidCore)
}
}
}
// https://github.com/nvzqz/bad-rs/blob/master/src/never.rs
mod bad {
pub(crate) type Never = <F as HasOutput>::Output;
pub trait HasOutput {
type Output;
}
impl<O> HasOutput for fn() -> O {
type Output = O;
}
type F = fn() -> !;
}