rp-hal-boards/rp2040-hal/src/timer.rs

383 lines
14 KiB
Rust
Raw Normal View History

2021-08-14 17:10:39 -05:00
//! Timer Peripheral
//!
//! The Timer peripheral on RP2040 consists of a 64-bit counter and 4 alarms.
//! The Counter is incremented once per microsecond. It obtains its clock source from the watchdog peripheral, you must enable the watchdog before using this peripheral.
//! Since it would take thousands of years for this counter to overflow you do not need to write logic for dealing with this if using get_counter.
//!
//! Each of the 4 alarms can match on the lower 32 bits of Counter and trigger an interrupt.
//!
//! See [Chapter 4 Section 6](https://datasheets.raspberrypi.org/rp2040/rp2040_datasheet.pdf) of the datasheet for more details.
2021-08-14 17:10:39 -05:00
use fugit::{MicrosDurationU32, MicrosDurationU64, TimerInstantU64};
use crate::atomic_register_access::{write_bitmask_clear, write_bitmask_set};
use crate::pac::{RESETS, TIMER};
use crate::resets::SubsystemReset;
2021-11-14 18:46:35 +01:00
use core::marker::PhantomData;
2021-08-14 17:10:39 -05:00
/// Instant type used by the Timer & Alarm methods.
pub type Instant = TimerInstantU64<1_000_000>;
fn get_counter(timer: &crate::pac::timer::RegisterBlock) -> Instant {
let mut hi0 = timer.timerawh.read().bits();
let timestamp = loop {
let low = timer.timerawl.read().bits();
let hi1 = timer.timerawh.read().bits();
if hi0 == hi1 {
break (u64::from(hi0) << 32) | u64::from(low);
}
hi0 = hi1;
};
TimerInstantU64::from_ticks(timestamp)
}
2021-08-14 17:10:39 -05:00
/// Timer peripheral
pub struct Timer {
timer: TIMER,
2021-11-14 18:46:35 +01:00
alarms: [bool; 4],
2021-08-14 17:10:39 -05:00
}
impl Timer {
/// Create a new [`Timer`]
pub fn new(timer: TIMER, resets: &mut RESETS) -> Self {
timer.reset_bring_down(resets);
timer.reset_bring_up(resets);
2021-11-14 18:46:35 +01:00
Self {
timer,
alarms: [true; 4],
}
2021-08-14 17:10:39 -05:00
}
/// Get the current counter value.
pub fn get_counter(&self) -> Instant {
get_counter(&self.timer)
}
/// Get the value of the least significant word of the counter.
pub fn get_counter_low(&self) -> u32 {
self.timer.timerawl.read().bits()
}
/// Initialized a Count Down instance without starting it.
pub fn count_down(&self) -> CountDown<'_> {
CountDown {
timer: self,
period: MicrosDurationU64::nanos(0),
next_end: None,
}
}
2021-11-14 18:46:35 +01:00
/// Retrieve a reference to alarm 0. Will only return a value the first time this is called
pub fn alarm_0(&mut self) -> Option<Alarm0> {
if self.alarms[0] {
self.alarms[0] = false;
Some(Alarm0(PhantomData))
} else {
None
}
2021-11-14 18:46:35 +01:00
}
/// Retrieve a reference to alarm 1. Will only return a value the first time this is called
pub fn alarm_1(&mut self) -> Option<Alarm1> {
if self.alarms[1] {
self.alarms[1] = false;
Some(Alarm1(PhantomData))
} else {
None
}
2021-11-14 18:46:35 +01:00
}
/// Retrieve a reference to alarm 2. Will only return a value the first time this is called
pub fn alarm_2(&mut self) -> Option<Alarm2> {
if self.alarms[2] {
self.alarms[2] = false;
Some(Alarm2(PhantomData))
} else {
None
}
2021-11-14 18:46:35 +01:00
}
/// Retrieve a reference to alarm 3. Will only return a value the first time this is called
pub fn alarm_3(&mut self) -> Option<Alarm3> {
if self.alarms[3] {
self.alarms[3] = false;
Some(Alarm3(PhantomData))
} else {
None
}
2021-11-14 18:46:35 +01:00
}
}
/// Implementation of the embedded_hal::Timer traits using rp2040_hal::timer counter
///
/// ## Usage
/// ```no_run
/// use embedded_hal::timer::{CountDown, Cancel};
/// use fugit::ExtU32;
/// use rp2040_hal;
/// let mut pac = rp2040_hal::pac::Peripherals::take().unwrap();
/// // Configure the Timer peripheral in count-down mode
/// let timer = rp2040_hal::Timer::new(pac.TIMER, &mut pac.RESETS);
/// let mut count_down = timer.count_down();
/// // Create a count_down timer for 500 milliseconds
/// count_down.start(500.millis());
/// // Block until timer has elapsed
/// let _ = nb::block!(count_down.wait());
/// // Restart the count_down timer with a period of 100 milliseconds
/// count_down.start(100.millis());
/// // Cancel it immediately
/// count_down.cancel();
/// ```
pub struct CountDown<'timer> {
timer: &'timer Timer,
period: MicrosDurationU64,
next_end: Option<u64>,
}
impl embedded_hal::timer::CountDown for CountDown<'_> {
type Time = MicrosDurationU64;
fn start<T>(&mut self, count: T)
where
T: Into<Self::Time>,
{
self.period = count.into();
self.next_end = Some(
self.timer
.get_counter()
.ticks()
.wrapping_add(self.period.to_micros()),
);
}
fn wait(&mut self) -> nb::Result<(), void::Void> {
if let Some(end) = self.next_end {
let ts = self.timer.get_counter().ticks();
if ts >= end {
self.next_end = Some(end.wrapping_add(self.period.to_micros()));
Ok(())
} else {
Err(nb::Error::WouldBlock)
}
} else {
panic!("CountDown is not running!");
}
}
}
impl embedded_hal::timer::Periodic for CountDown<'_> {}
impl embedded_hal::timer::Cancel for CountDown<'_> {
type Error = &'static str;
fn cancel(&mut self) -> Result<(), Self::Error> {
if self.next_end.is_none() {
Err("CountDown is not running.")
} else {
self.next_end = None;
Ok(())
}
2021-08-14 17:10:39 -05:00
}
}
2021-11-14 18:46:35 +01:00
2022-04-17 23:03:11 +01:00
/// Alarm abstraction.
pub trait Alarm {
/// Clear the interrupt flag.
///
/// The interrupt is unable to trigger a 2nd time until this interrupt is cleared.
fn clear_interrupt(&mut self);
/// Enable this alarm to trigger an interrupt.
///
/// After this interrupt is triggered, make sure to clear the interrupt with [clear_interrupt].
///
/// [clear_interrupt]: #method.clear_interrupt
fn enable_interrupt(&mut self);
/// Disable this alarm, preventing it from triggering an interrupt.
fn disable_interrupt(&mut self);
/// Schedule the alarm to be finished after `countdown`. If [enable_interrupt] is called,
/// this will trigger interrupt whenever this time elapses.
///
/// [enable_interrupt]: #method.enable_interrupt
fn schedule(&mut self, countdown: MicrosDurationU32) -> Result<(), ScheduleAlarmError>;
2022-04-17 23:03:11 +01:00
/// Schedule the alarm to be finished at the given timestamp. If [enable_interrupt] is
/// called, this will trigger interrupt whenever this timestamp is reached.
///
/// The RP2040 is unable to schedule an event taking place in more than
/// `u32::max_value()` microseconds.
///
/// [enable_interrupt]: #method.enable_interrupt
fn schedule_at(&mut self, timestamp: Instant) -> Result<(), ScheduleAlarmError>;
2022-04-17 23:03:11 +01:00
/// Return true if this alarm is finished.
fn finished(&self) -> bool;
}
2021-11-14 18:46:35 +01:00
macro_rules! impl_alarm {
($name:ident { rb: $timer_alarm:ident, int: $int_alarm:ident, int_name: $int_name:tt, armed_bit_mask: $armed_bit_mask: expr }) => {
/// An alarm that can be used to schedule events in the future. Alarms can also be configured to trigger interrupts.
pub struct $name(PhantomData<()>);
impl $name {
fn schedule_internal(
&mut self,
timer: &crate::pac::timer::RegisterBlock,
timestamp: Instant,
) -> Result<(), ScheduleAlarmError> {
let timestamp_low = (timestamp.ticks() & 0xFFFF_FFFF) as u32;
// This lock is for time-criticality
cortex_m::interrupt::free(|_| {
let alarm = &timer.$timer_alarm;
// safety: This is the only code in the codebase that accesses memory address $timer_alarm
alarm.write(|w| unsafe { w.bits(timestamp_low) });
// If it is not set, it has already triggered.
let now = get_counter(timer);
if now > timestamp && (timer.armed.read().bits() & $armed_bit_mask) != 0 {
// timestamp was set in the past
// safety: TIMER.armed is a write-clear register, and there can only be
// 1 instance of AlarmN so we can safely atomically clear this bit.
unsafe {
timer.armed.write_with_zero(|w| w.bits($armed_bit_mask));
}
return Err(ScheduleAlarmError::AlarmTooSoon);
}
Ok(())
})
}
}
2021-11-14 18:46:35 +01:00
2022-04-17 23:03:11 +01:00
impl Alarm for $name {
2021-11-14 18:46:35 +01:00
/// Clear the interrupt flag. This should be called after interrupt `
#[doc = $int_name]
/// ` is called.
///
/// The interrupt is unable to trigger a 2nd time until this interrupt is cleared.
2022-04-17 23:03:11 +01:00
fn clear_interrupt(&mut self) {
// safety: TIMER.intr is a write-clear register, so we can atomically clear our interrupt
// by writing its value to this field
// Only one instance of this alarm index can exist, and only this alarm interacts with this bit
// of the TIMER.inte register
unsafe {
let timer = &(*pac::TIMER::ptr());
timer.intr.write_with_zero(|w| w.$int_alarm().set_bit());
}
2021-11-14 18:46:35 +01:00
}
/// Enable this alarm to trigger an interrupt. This alarm will trigger `
#[doc = $int_name]
/// `.
///
/// After this interrupt is triggered, make sure to clear the interrupt with [clear_interrupt].
///
/// [clear_interrupt]: #method.clear_interrupt
2022-04-17 23:03:11 +01:00
fn enable_interrupt(&mut self) {
// safety: using the atomic set alias means we can atomically set our interrupt enable bit.
// Only one instance of this alarm can exist, and only this alarm interacts with this bit
// of the TIMER.inte register
unsafe {
let timer = &(*pac::TIMER::ptr());
let reg = (&timer.inte).as_ptr();
write_bitmask_set(reg, $armed_bit_mask);
}
2021-11-14 18:46:35 +01:00
}
/// Disable this alarm, preventing it from triggering an interrupt.
2022-04-17 23:03:11 +01:00
fn disable_interrupt(&mut self) {
// safety: using the atomic set alias means we can atomically clear our interrupt enable bit.
// Only one instance of this alarm can exist, and only this alarm interacts with this bit
// of the TIMER.inte register
unsafe {
let timer = &(*pac::TIMER::ptr());
let reg = (&timer.inte).as_ptr();
write_bitmask_clear(reg, $armed_bit_mask);
}
}
/// Schedule the alarm to be finished after `countdown`. If [enable_interrupt] is called,
/// this will trigger interrupt `
2021-11-14 18:46:35 +01:00
#[doc = $int_name]
/// ` whenever this time elapses.
///
/// [enable_interrupt]: #method.enable_interrupt
fn schedule(&mut self, countdown: MicrosDurationU32) -> Result<(), ScheduleAlarmError> {
// safety: Only read operations are made on the timer and they should not have any UB
let timer = unsafe { &*TIMER::ptr() };
let timestamp = get_counter(timer) + countdown;
self.schedule_internal(timer, timestamp)
}
/// Schedule the alarm to be finished at the given timestamp. If [enable_interrupt] is
/// called, this will trigger interrupt `
#[doc = $int_name]
/// ` whenever this timestamp is reached.
///
/// The RP2040 is unable to schedule an event taking place in more than
/// `u32::max_value()` microseconds.
///
/// [enable_interrupt]: #method.enable_interrupt
fn schedule_at(&mut self, timestamp: Instant) -> Result<(), ScheduleAlarmError> {
// safety: Only read operations are made on the timer and they should not have any UB
let timer = unsafe { &*TIMER::ptr() };
let now = get_counter(timer);
let duration = timestamp.ticks().saturating_sub(now.ticks());
if duration > u32::max_value().into() {
return Err(ScheduleAlarmError::AlarmTooLate);
}
self.schedule_internal(timer, timestamp)
2021-11-14 18:46:35 +01:00
}
/// Return true if this alarm is finished.
2022-04-17 23:03:11 +01:00
fn finished(&self) -> bool {
// safety: This is a read action and should not have any UB
let bits: u32 = unsafe { &*TIMER::ptr() }.armed.read().bits();
(bits & $armed_bit_mask) == 0
2021-11-14 18:46:35 +01:00
}
}
};
}
/// Errors that can be returned from any of the `AlarmX::schedule` methods.
#[non_exhaustive]
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub enum ScheduleAlarmError {
/// Alarm time is too low. Should be at least 10 microseconds.
AlarmTooSoon,
/// Alarm time is too high. Should not be more than `u32::max_value()` in the future.
AlarmTooLate,
}
2021-11-14 18:46:35 +01:00
impl_alarm!(Alarm0 {
rb: alarm0,
int: alarm_0,
int_name: "TIMER_IRQ_0",
2021-11-14 18:46:35 +01:00
armed_bit_mask: 0b0001
});
impl_alarm!(Alarm1 {
rb: alarm1,
int: alarm_1,
int_name: "TIMER_IRQ_1",
2021-11-14 18:46:35 +01:00
armed_bit_mask: 0b0010
});
impl_alarm!(Alarm2 {
rb: alarm2,
int: alarm_2,
int_name: "TIMER_IRQ_2",
2021-11-14 18:46:35 +01:00
armed_bit_mask: 0b0100
});
impl_alarm!(Alarm3 {
rb: alarm3,
int: alarm_3,
int_name: "TIMER_IRQ_3",
2021-11-14 18:46:35 +01:00
armed_bit_mask: 0b1000
});