rp-hal-boards/rp2040-hal/src/pio.rs

930 lines
30 KiB
Rust
Raw Normal View History

//! Programmable IO (PIO)
/// See [Chapter 3](https://rptl.io/pico-datasheet) for more details.
use crate::resets::SubsystemReset;
use pio::{Program, SideSet, Wrap};
const PIO_INSTRUCTION_COUNT: usize = 32;
/// PIO Instance
pub trait Instance:
core::ops::Deref<Target = rp2040_pac::pio0::RegisterBlock> + SubsystemReset
{
}
impl Instance for rp2040_pac::PIO0 {}
impl Instance for rp2040_pac::PIO1 {}
/// Programmable IO Block
pub struct PIO<P: Instance> {
used_instruction_space: core::cell::Cell<u32>, // bit for each PIO_INSTRUCTION_COUNT
pio: P,
state_machines: [StateMachine<P>; 4],
interrupts: [Interrupt<P>; 2],
}
impl<P: Instance> core::fmt::Debug for PIO<P> {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
f.debug_struct("PIO")
.field("used_instruction_space", &self.used_instruction_space)
.field("pio", &"PIO { .. }")
.finish()
}
}
// Safety: `PIO` provides exclusive access to PIO registers.
unsafe impl<P: Instance + Send> Send for PIO<P> {}
impl<P: Instance> PIO<P> {
/// Create a new PIO wrapper.
pub fn new(pio: P, resets: &mut pac::RESETS) -> Self {
pio.reset_bring_up(resets);
PIO {
used_instruction_space: core::cell::Cell::new(0),
state_machines: [
StateMachine {
id: 0,
block: pio.deref(),
_phantom: core::marker::PhantomData,
},
StateMachine {
id: 1,
block: pio.deref(),
_phantom: core::marker::PhantomData,
},
StateMachine {
id: 2,
block: pio.deref(),
_phantom: core::marker::PhantomData,
},
StateMachine {
id: 3,
block: pio.deref(),
_phantom: core::marker::PhantomData,
},
],
interrupts: [
Interrupt {
id: 0,
block: pio.deref(),
_phantom: core::marker::PhantomData,
},
Interrupt {
id: 1,
block: pio.deref(),
_phantom: core::marker::PhantomData,
},
],
pio,
}
}
/// Free this instance.
pub fn free(self) -> P {
self.pio
}
/// This PIO's state machines.
pub fn state_machines(&self) -> &[StateMachine<P>; 4] {
&self.state_machines
}
/// This PIO's interrupts.
pub fn interrupts(&self) -> &[Interrupt<P>; 2] {
&self.interrupts
}
/// Clear PIO's IRQ flags indicated by the bits.
///
/// The PIO has 8 IRQ flags, of which 4 are visible to the host processor. Each bit of `flags` corresponds to one of
/// the IRQ flags.
pub fn clear_irq(&self, flags: u8) {
self.pio
.deref()
.irq
.write(|w| unsafe { w.irq().bits(flags) });
}
/// Force PIO's IRQ flags indicated by the bits.
///
/// The PIO has 8 IRQ flags, of which 4 are visible to the host processor. Each bit of `flags` corresponds to one of
/// the IRQ flags.
pub fn force_irq(&self, flags: u8) {
self.pio
.deref()
.irq_force
.write(|w| unsafe { w.irq_force().bits(flags) });
}
fn find_offset_for_instructions(&self, i: &[u16], origin: Option<u8>) -> Option<usize> {
if i.len() > PIO_INSTRUCTION_COUNT {
None
} else {
let mask = (1 << i.len()) - 1;
if let Some(origin) = origin {
if origin as usize > PIO_INSTRUCTION_COUNT - i.len()
|| self.used_instruction_space.get() & (mask << origin) != 0
{
None
} else {
Some(origin as usize)
}
} else {
for i in (0..=32 - i.len()).rev() {
if self.used_instruction_space.get() & (mask << i) == 0 {
return Some(i);
}
}
None
}
}
}
2021-09-16 02:34:07 +10:00
fn add_program(
&self,
instructions: &[u16],
origin: Option<u8>,
side_set: pio::SideSet,
) -> Option<usize> {
if let Some(offset) = self.find_offset_for_instructions(instructions, origin) {
2021-09-16 02:34:07 +10:00
for (i, instr) in instructions
.iter()
.map(|instr| {
let mut instr = pio::Instruction::decode(*instr, side_set).unwrap();
instr.operands = match instr.operands {
pio::InstructionOperands::JMP { condition, address } => {
// JMP instruction. We need to apply offset here
let address = address + offset as u8;
assert!(
address < pio::RP2040_MAX_PROGRAM_SIZE as u8,
"Invalid JMP out of the program after offset addition"
);
pio::InstructionOperands::JMP { condition, address }
}
_ => instr.operands,
};
instr.encode(side_set)
})
.enumerate()
{
self.pio.instr_mem[i + offset].write(|w| unsafe { w.bits(instr as u32) })
}
self.used_instruction_space
.set(self.used_instruction_space.get() | ((1 << instructions.len()) - 1));
Some(offset)
} else {
None
}
}
}
/// PIO State Machine.
#[derive(Debug)]
pub struct StateMachine<P: Instance> {
id: u8,
block: *const rp2040_pac::pio0::RegisterBlock,
_phantom: core::marker::PhantomData<P>,
}
// `StateMachine` doesn't implement `Send` because it sometimes accesses shared registers, e.g. `sm_enable`.
// unsafe impl<P: Instance + Send> Send for StateMachine<P> {}
impl<P: Instance> StateMachine<P> {
/// Start and stop the state machine.
pub fn set_enabled(&self, enabled: bool) {
let mask = 1 << self.id;
if enabled {
self.block()
.ctrl
.modify(|r, w| unsafe { w.sm_enable().bits(r.sm_enable().bits() | mask) })
} else {
self.block()
.ctrl
.modify(|r, w| unsafe { w.sm_enable().bits(r.sm_enable().bits() & !mask) })
}
}
fn restart(&self) {
self.block()
.ctrl
.write(|w| unsafe { w.sm_restart().bits(1 << self.id) });
}
fn reset_clock(&self) {
self.block()
.ctrl
.write(|w| unsafe { w.clkdiv_restart().bits(1 << self.id) });
}
fn set_clock_divisor(&self, divisor: f32) {
// sm frequency = clock freq / (CLKDIV_INT + CLKDIV_FRAC / 256)
let int = divisor as u16;
let frac = ((divisor - int as f32) * 256.0) as u8;
self.sm().sm_clkdiv.write(|w| {
unsafe {
w.int().bits(int);
w.frac().bits(frac);
}
w
});
}
/// The address of the instruction currently being executed.
pub fn instruction_address(&self) -> u32 {
self.sm().sm_addr.read().bits()
}
/// Set the current instruction.
pub fn set_instruction(&self, instruction: u16) {
self.sm()
.sm_instr
.write(|w| unsafe { w.sm0_instr().bits(instruction) })
}
/// Check if the current instruction is stalled.
pub fn stalled(&self) -> bool {
self.sm().sm_execctrl.read().exec_stalled().bits()
}
fn block(&self) -> &rp2040_pac::pio0::RegisterBlock {
unsafe { &*self.block }
}
fn sm(&self) -> &rp2040_pac::pio0::SM {
&self.block().sm[self.id as usize]
}
/// Get the next element from RX FIFO.
///
/// Returns `None` if the FIFO is empty.
pub fn read_rx(&self) -> Option<u32> {
let is_empty = self.block().fstat.read().rxempty().bits() & (1 << self.id) != 0;
if is_empty {
return None;
}
Some(self.block().rxf[self.id as usize].read().bits())
}
/// Write an element to TX FIFO.
///
/// Returns `true` if the value was written to FIFO, `false` otherwise.
pub fn write_tx(&self, value: u32) -> bool {
let is_full = self.block().fstat.read().txfull().bits() & (1 << self.id) != 0;
if is_full {
return false;
}
self.block().txf[self.id as usize].write(|w| unsafe { w.bits(value) });
true
}
}
/// PIO Interrupt controller.
#[derive(Debug)]
pub struct Interrupt<P: Instance> {
id: u8,
block: *const rp2040_pac::pio0::RegisterBlock,
_phantom: core::marker::PhantomData<P>,
}
// Safety: `Interrupt` provides exclusive access to interrupt registers.
unsafe impl<P: Instance + Send> Send for Interrupt<P> {}
impl<P: Instance> Interrupt<P> {
/// Enable interrupts raised by state machines.
///
/// The PIO peripheral has 4 outside visible interrupts that can be raised by the state machines. Note that this
/// don't correspond with the state machine index; any state machine can raise any one of the four interrupts.
pub fn enable_sm_interrupt(&self, id: u8) {
match id {
0 => self.irq().irq_inte.modify(|_, w| w.sm0().set_bit()),
1 => self.irq().irq_inte.modify(|_, w| w.sm1().set_bit()),
2 => self.irq().irq_inte.modify(|_, w| w.sm2().set_bit()),
3 => self.irq().irq_inte.modify(|_, w| w.sm3().set_bit()),
_ => panic!("invalid state machine interrupt number"),
}
}
/// Disable interrupts raised by state machines.
///
/// See [`Self::enable_sm_interrupt`] for info about the index.
pub fn disable_sm_interrupt(&self, id: u8) {
match id {
0 => self.irq().irq_inte.modify(|_, w| w.sm0().clear_bit()),
1 => self.irq().irq_inte.modify(|_, w| w.sm1().clear_bit()),
2 => self.irq().irq_inte.modify(|_, w| w.sm2().clear_bit()),
3 => self.irq().irq_inte.modify(|_, w| w.sm3().clear_bit()),
_ => panic!("invalid state machine interrupt number"),
}
}
/// Force state machine interrupt.
///
/// Note that this doesn't affect the state seen by the state machine. For that, see [`PIO::force_irq`].
///
/// See [`Self::enable_sm_interrupt`] for info about the index.
pub fn force_sm_interrupt(&self, id: u8) {
match id {
0 => self.irq().irq_intf.modify(|_, w| w.sm0().set_bit()),
1 => self.irq().irq_intf.modify(|_, w| w.sm1().set_bit()),
2 => self.irq().irq_intf.modify(|_, w| w.sm2().set_bit()),
3 => self.irq().irq_intf.modify(|_, w| w.sm3().set_bit()),
_ => panic!("invalid state machine interrupt number"),
}
}
/// Enable TX FIFO not full interrupt.
///
/// Each of the 4 state machines have their own TX FIFO. This interrupt is raised when the TX FIFO is not full, i.e.
/// one could push more data to it.
pub fn enable_tx_not_full_interrupt(&self, id: u8) {
match id {
0 => self.irq().irq_inte.modify(|_, w| w.sm0_txnfull().set_bit()),
1 => self.irq().irq_inte.modify(|_, w| w.sm1_txnfull().set_bit()),
2 => self.irq().irq_inte.modify(|_, w| w.sm2_txnfull().set_bit()),
3 => self.irq().irq_inte.modify(|_, w| w.sm3_txnfull().set_bit()),
_ => panic!("invalid state machine interrupt number"),
}
}
/// Disable TX FIFO not full interrupt.
///
/// See [`Self::enable_tx_not_full_interrupt`] for info about the index.
pub fn disable_tx_not_full_interrupt(&self, id: u8) {
match id {
0 => self
.irq()
.irq_inte
.modify(|_, w| w.sm0_txnfull().clear_bit()),
1 => self
.irq()
.irq_inte
.modify(|_, w| w.sm1_txnfull().clear_bit()),
2 => self
.irq()
.irq_inte
.modify(|_, w| w.sm2_txnfull().clear_bit()),
3 => self
.irq()
.irq_inte
.modify(|_, w| w.sm3_txnfull().clear_bit()),
_ => panic!("invalid state machine interrupt number"),
}
}
/// Force TX FIFO not full interrupt.
///
/// See [`Self::enable_tx_not_full_interrupt`] for info about the index.
pub fn force_tx_not_full_interrupt(&self, id: u8) {
match id {
0 => self.irq().irq_intf.modify(|_, w| w.sm0_txnfull().set_bit()),
1 => self.irq().irq_intf.modify(|_, w| w.sm1_txnfull().set_bit()),
2 => self.irq().irq_intf.modify(|_, w| w.sm2_txnfull().set_bit()),
3 => self.irq().irq_intf.modify(|_, w| w.sm3_txnfull().set_bit()),
_ => panic!("invalid state machine interrupt number"),
}
}
/// Enable RX FIFO not empty interrupt.
///
/// Each of the 4 state machines have their own RX FIFO. This interrupt is raised when the RX FIFO is not empty,
/// i.e. one could read more data from it.
pub fn enable_rx_not_empty_interrupt(&self, id: u8) {
match id {
0 => self
.irq()
.irq_inte
.modify(|_, w| w.sm0_rxnempty().set_bit()),
1 => self
.irq()
.irq_inte
.modify(|_, w| w.sm1_rxnempty().set_bit()),
2 => self
.irq()
.irq_inte
.modify(|_, w| w.sm2_rxnempty().set_bit()),
3 => self
.irq()
.irq_inte
.modify(|_, w| w.sm3_rxnempty().set_bit()),
_ => panic!("invalid state machine interrupt number"),
}
}
/// Disable RX FIFO not empty interrupt.
///
/// See [`Self::enable_rx_not_empty_interrupt`] for info about the index.
pub fn disable_rx_not_empty_interrupt(&self, id: u8) {
match id {
0 => self
.irq()
.irq_inte
.modify(|_, w| w.sm0_rxnempty().clear_bit()),
1 => self
.irq()
.irq_inte
.modify(|_, w| w.sm1_rxnempty().clear_bit()),
2 => self
.irq()
.irq_inte
.modify(|_, w| w.sm2_rxnempty().clear_bit()),
3 => self
.irq()
.irq_inte
.modify(|_, w| w.sm3_rxnempty().clear_bit()),
_ => panic!("invalid state machine interrupt number"),
}
}
/// Force RX FIFO not empty interrupt.
///
/// See [`Self::enable_rx_not_empty_interrupt`] for info about the index.
pub fn force_rx_not_empty_interrupt(&self, id: u8) {
match id {
0 => self
.irq()
.irq_intf
.modify(|_, w| w.sm0_rxnempty().set_bit()),
1 => self
.irq()
.irq_intf
.modify(|_, w| w.sm1_rxnempty().set_bit()),
2 => self
.irq()
.irq_intf
.modify(|_, w| w.sm2_rxnempty().set_bit()),
3 => self
.irq()
.irq_intf
.modify(|_, w| w.sm3_rxnempty().set_bit()),
_ => panic!("invalid state machine interrupt number"),
}
}
/// Get the raw interrupt state.
///
/// This is the state of the interrupts without interrupt masking and forcing.
pub fn raw(&self) -> InterruptState {
InterruptState(self.block().intr.read().bits())
}
/// Get the interrupt state.
///
/// This is the state of the interrupts after interrupt masking and forcing.
pub fn state(&self) -> InterruptState {
InterruptState(self.irq().irq_ints.read().bits())
}
fn block(&self) -> &rp2040_pac::pio0::RegisterBlock {
unsafe { &*self.block }
}
fn irq(&self) -> &rp2040_pac::pio0::SM_IRQ {
&self.block().sm_irq[self.id as usize]
}
}
/// Provides easy access for decoding PIO's interrupt state.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct InterruptState(u32);
macro_rules! raw_interrupt_accessor {
($name:ident, $doc:literal, $idx:expr) => {
#[doc = concat!("Check whether interrupt ", $doc, " has been raised.")]
pub fn $name(self) -> bool {
self.0 & (1 << $idx) != 0
}
};
}
impl InterruptState {
raw_interrupt_accessor!(sm0_rx_not_empty, "SM0_RXNEMPTY", 0);
raw_interrupt_accessor!(sm1_rx_not_empty, "SM1_RXNEMPTY", 1);
raw_interrupt_accessor!(sm2_rx_not_empty, "SM2_RXNEMPTY", 2);
raw_interrupt_accessor!(sm3_rx_not_empty, "SM3_RXNEMPTY", 3);
raw_interrupt_accessor!(sm0_tx_not_full, "SM0_TXNFULL", 4);
raw_interrupt_accessor!(sm1_tx_not_full, "SM1_TXNFULL", 5);
raw_interrupt_accessor!(sm2_tx_not_full, "SM2_TXNFULL", 6);
raw_interrupt_accessor!(sm3_tx_not_full, "SM3_TXNFULL", 7);
raw_interrupt_accessor!(sm0, "SM0", 8);
raw_interrupt_accessor!(sm1, "SM1", 9);
raw_interrupt_accessor!(sm2, "SM2", 10);
raw_interrupt_accessor!(sm3, "SM3", 11);
}
/// Comparison used for `mov x, status` instruction.
#[derive(Debug, Clone, Copy)]
pub enum MovStatusConfig {
/// The `mov x, status` instruction returns all ones if TX FIFO level is below the set status, otherwise all zeros.
Tx(u8),
/// The `mov x, status` instruction returns all ones if RX FIFO level is below the set status, otherwise all zeros.
Rx(u8),
}
/// Shift direction for input and output shifting.
#[derive(Debug, Clone, Copy)]
pub enum ShiftDirection {
/// Shift register to left.
Left,
/// Shift register to right.
Right,
}
impl ShiftDirection {
fn bit(self) -> bool {
match self {
Self::Left => false,
Self::Right => true,
}
}
}
/// Builder to deploy a fully configured PIO program on one of the state
/// machines.
#[derive(Debug)]
pub struct PIOBuilder<'a> {
/// Clock divisor.
clock_divisor: f32,
/// Instructions of the program.
instructions: &'a [u16],
/// Origin where this program should be loaded.
instruction_origin: Option<u8>,
/// Wrapping behavior.
wrap: Wrap,
/// Side-set behavior.
side_set: SideSet,
/// GPIO pin used by `jmp pin` instruction.
jmp_pin: u8,
/// Continuously assert the most recent OUT/SET to the pins.
out_sticky: bool,
/// Use a bit of OUT data as an auxilary write enable.
///
/// When [`out_sticky`](Self::out_sticky) is enabled, setting the bit to 0 deasserts for that instr.
inline_out: Option<u8>,
/// Config for `mov x, status` instruction.
mov_status: MovStatusConfig,
/// Config for FIFO joining.
fifo_join: Buffers,
/// Number of bits shifted out of `OSR` before autopull or conditional pull will take place.
pull_threshold: u8,
/// Number of bits shifted into `ISR` before autopush or conditional push will take place.
push_threshold: u8,
// Shift direction for `OUT` instruction.
out_shiftdir: ShiftDirection,
// Shift direction for `IN` instruction.
in_shiftdir: ShiftDirection,
// Enable autopull.
autopull: bool,
// Enable autopush.
autopush: bool,
/// Number of pins asserted by a `SET`.
set_count: u8,
/// Number of pins asserted by an `OUT PINS`, `OUT PINDIRS` or `MOV PINS` instruction.
out_count: u8,
/// The first pin that is assigned in state machine's `IN` data bus.
in_base: u8,
/// The first pin that is affected by side-set operations.
side_set_base: u8,
/// The first pin that is affected by `SET PINS` or `SET PINDIRS` instructions.
set_base: u8,
/// The first pin that is affected by `OUT PINS`, `OUT PINDIRS` or `MOV PINS` instructions.
out_base: u8,
}
impl<'a> Default for PIOBuilder<'a> {
fn default() -> Self {
PIOBuilder {
clock_divisor: 1.0,
instructions: &[],
instruction_origin: None,
wrap: Wrap {
source: 31,
target: 0,
},
side_set: SideSet::default(),
jmp_pin: 0,
out_sticky: false,
inline_out: None,
mov_status: MovStatusConfig::Tx(0),
fifo_join: Buffers::RxTx,
pull_threshold: 0,
push_threshold: 0,
out_shiftdir: ShiftDirection::Left,
in_shiftdir: ShiftDirection::Left,
autopull: false,
autopush: false,
set_count: 5,
out_count: 0,
in_base: 0,
side_set_base: 0,
set_base: 0,
out_base: 0,
}
}
}
/// Buffer sharing configuration.
#[derive(Debug, Clone, Copy)]
pub enum Buffers {
/// No sharing.
RxTx,
/// The memory of the RX FIFO is given to the TX FIFO to double its depth.
OnlyTx,
/// The memory of the TX FIFO is given to the RX FIFO to double its depth.
OnlyRx,
}
/// Errors that occurred during `PIOBuilder::build`.
#[derive(Debug)]
pub enum BuildError {
/// There was not enough space for the instructions on the selected PIO.
NoSpace,
}
impl<'a> PIOBuilder<'a> {
/// Set config settings based on information from the given [`pio::Program`].
/// Additional configuration may be needed in addition to this.
pub fn with_program(mut self, p: &'a Program<{ pio::RP2040_MAX_PROGRAM_SIZE }>) -> Self {
self.instruction_origin = p.origin;
self.instructions(&p.code).wrap(p.wrap).side_set(p.side_set)
}
/// Set the instructions of the program.
pub fn instructions(mut self, instructions: &'a [u16]) -> Self {
self.instructions = instructions;
self
}
/// Set the wrap source and target.
///
/// The program will automatically jump from the wrap bottom to the wrap top in 0 cycles.
pub fn wrap(mut self, wrap: Wrap) -> Self {
self.wrap = wrap;
self
}
/// Set the pins asserted by `SET` instruction.
///
/// The least-significant bit of `SET` instruction asserts the state of the pin indicated by `base`, the next bit
/// asserts the state of the next pin, and so on up to `count` pins. The pin numbers are considered modulo 32.
pub fn set_pins(mut self, base: u8, count: u8) -> Self {
assert!(count <= 5);
self.set_base = base;
self.set_count = count;
self
}
/// Set the pins asserted by `OUT` instruction.
///
/// The least-significant bit of `OUT` instruction asserts the state of the pin indicated by `base`, the next bit
/// asserts the state of the next pin, and so on up to `count` pins. The pin numbers are considered modulo 32.
pub fn out_pins(mut self, base: u8, count: u8) -> Self {
assert!(count <= 5);
self.out_base = base;
self.out_count = count;
self
}
/// Set the pins used by `IN` instruction.
///
/// The `IN` instruction reads the least significant bit from the pin indicated by `base`, the next bit from the
/// next pin, and so on. The pin numbers are considered modulo 32.
pub fn in_pin_base(mut self, base: u8) -> Self {
self.in_base = base;
self
}
/// Set the pin used by `JMP PIN` instruction.
///
/// When the pin set by this function is high, the jump is taken, otherwise not.
pub fn jmp_pin(mut self, pin: u8) -> Self {
self.jmp_pin = pin;
self
}
/// Set the pins used by side-set instructions.
///
/// The least-significant side-set bit asserts the state of the pin indicated by `base`, the next bit asserts the
/// state of the next pin, and so on up to number of bits set using [`Self::side_set`] function.
pub fn side_set_pin_base(mut self, base: u8) -> Self {
self.side_set_base = base;
self
}
/// Set the side-set status.
pub fn side_set(mut self, side_set: SideSet) -> Self {
self.side_set = side_set;
self
}
/// Set buffer sharing.
///
/// See [`Buffers`] for more information.
pub fn buffers(mut self, buffers: Buffers) -> Self {
self.fifo_join = buffers;
self
}
/// Set the clock divisor.
///
/// The is based on the sys_clk. Set 1 for full speed. A clock divisor of `n` will cause the state machine to run 1
/// cycle every `n` clock cycles. For small values of `n`, a fractional divisor may introduce unacceptable jitter.
pub fn clock_divisor(mut self, divisor: f32) -> Self {
self.clock_divisor = divisor;
self
}
/// Set the output sticky state.
///
/// When the output is set to be sticky, the PIO hardware continuously asserts the most recent `OUT`/`SET` to the
/// pins.
pub fn out_sticky(mut self, out_sticky: bool) -> Self {
self.out_sticky = out_sticky;
self
}
/// Set the inline `OUT` enable bit.
///
/// When set to value, the given bit of `OUT` instruction's data is used as an auxiliary write enable. When used
/// with [`Self::out_sticky`], writes with enable 0 will deassert the latest pin write.
pub fn inline_out(mut self, inline_out: Option<u8>) -> Self {
self.inline_out = inline_out;
self
}
/// Set the autopush state.
///
/// When autopush is enabled, the `IN` instruction automatically pushes the data once the number of bits reaches
/// threshold set by [`Self::push_threshold`].
pub fn autopush(mut self, autopush: bool) -> Self {
self.autopush = autopush;
self
}
/// Set the number of bits pushed into ISR before autopush or conditional push will take place.
pub fn push_threshold(mut self, threshold: u8) -> Self {
self.push_threshold = threshold;
self
}
/// Set the autopull state.
///
/// When autopull is enabled, the `OUT` instruction automatically pulls the data once the number of bits reaches
/// threshold set by [`Self::pull_threshold`].
pub fn autopull(mut self, autopull: bool) -> Self {
self.autopull = autopull;
self
}
/// Set the number of bits pulled from out of OSR before autopull or conditional pull will take place.
pub fn pull_threshold(mut self, threshold: u8) -> Self {
self.pull_threshold = threshold;
self
}
/// Set the ISR shift direction for `IN` instruction.
///
/// For example `ShiftDirection::Right` means that ISR is shifted to right, i.e. data enters from left.
pub fn in_shift_direction(mut self, direction: ShiftDirection) -> Self {
self.in_shiftdir = direction;
self
}
/// Set the OSR shift direction for `OUT` instruction.
///
/// For example `ShiftDirection::Right` means that OSR is shifted to right, i.e. data is taken from the right side.
pub fn out_shift_direction(mut self, direction: ShiftDirection) -> Self {
self.out_shiftdir = direction;
self
}
/// Build the config and deploy it to a StateMachine.
pub fn build<P: Instance>(self, pio: &PIO<P>, sm: &StateMachine<P>) -> Result<(), BuildError> {
2021-09-16 02:34:07 +10:00
let offset =
match pio.add_program(self.instructions, self.instruction_origin, self.side_set) {
Some(o) => o,
None => return Err(BuildError::NoSpace),
};
// Stop the SM
// TODO: This should probably do before we write the program source code
sm.set_enabled(false);
// Write all configuration bits
sm.set_clock_divisor(self.clock_divisor);
sm.sm().sm_execctrl.write(|w| {
w.side_en().bit(self.side_set.optional());
w.side_pindir().bit(self.side_set.pindirs());
unsafe {
w.jmp_pin().bits(self.jmp_pin);
}
if let Some(inline_out) = self.inline_out {
w.inline_out_en().bit(true);
unsafe {
w.out_en_sel().bits(inline_out);
}
} else {
w.inline_out_en().bit(false);
}
w.out_sticky().bit(self.out_sticky);
unsafe {
w.wrap_top().bits(offset as u8 + self.wrap.source);
w.wrap_bottom().bits(offset as u8 + self.wrap.target);
}
let n = match self.mov_status {
MovStatusConfig::Tx(n) => {
w.status_sel().bit(false);
n
}
MovStatusConfig::Rx(n) => {
w.status_sel().bit(true);
n
}
};
unsafe {
w.status_n().bits(n);
}
w
});
sm.sm().sm_shiftctrl.write(|w| {
let (fjoin_rx, fjoin_tx) = match self.fifo_join {
Buffers::RxTx => (false, false),
Buffers::OnlyTx => (false, true),
Buffers::OnlyRx => (true, false),
};
w.fjoin_rx().bit(fjoin_rx);
w.fjoin_tx().bit(fjoin_tx);
unsafe {
// TODO: Encode 32 as zero, and error on 0
w.pull_thresh().bits(self.pull_threshold);
w.push_thresh().bits(self.push_threshold);
}
w.out_shiftdir().bit(self.out_shiftdir.bit());
w.in_shiftdir().bit(self.in_shiftdir.bit());
w.autopull().bit(self.autopull);
w.autopush().bit(self.autopush);
w
});
sm.sm().sm_pinctrl.write(|w| {
unsafe {
w.sideset_count().bits(self.side_set.bits());
w.set_count().bits(self.set_count);
w.out_count().bits(self.out_count);
w.in_base().bits(self.in_base);
w.sideset_base().bits(self.side_set_base);
w.set_base().bits(self.set_base);
w.out_base().bits(self.out_base);
}
w
});
// Restart SM and its clock
sm.restart();
sm.reset_clock();
// Set starting location by setting the state machine to execute a jmp
// to the beginning of the program we loaded in.
2021-09-16 02:34:07 +10:00
sm.set_instruction(
pio::InstructionOperands::JMP {
condition: pio::JmpCondition::Always,
address: offset as u8,
}
.encode(),
);
// Enable SM
sm.set_enabled(true);
Ok(())
}
}