mirror of
https://github.com/italicsjenga/slang-shaders.git
synced 2024-11-23 08:11:29 +11:00
Update crt-geom.slang
Changed the formatting, tab size is 4 spaces. Based on the discussion in IRC, I carefully deleted every instance of global.SourceSize.zw, because z = 1/x and w = 1/y and zw is NOT the same as IN.video_size.
This commit is contained in:
parent
f14ba96715
commit
c864dbb2d4
|
@ -46,33 +46,33 @@ layout(std140, set = 0, binding = 0) uniform UBO
|
||||||
This shader variant is pre-configured with screen curvature
|
This shader variant is pre-configured with screen curvature
|
||||||
*/
|
*/
|
||||||
|
|
||||||
// Comment the next line to disable interpolation in linear gamma (and
|
// Comment the next line to disable interpolation in linear gamma (and
|
||||||
// gain speed).
|
// gain speed).
|
||||||
#define LINEAR_PROCESSING
|
#define LINEAR_PROCESSING
|
||||||
|
|
||||||
// Enable 3x oversampling of the beam profile; improves moire effect caused by scanlines+curvature
|
// Enable 3x oversampling of the beam profile; improves moire effect caused by scanlines+curvature
|
||||||
#define OVERSAMPLE
|
#define OVERSAMPLE
|
||||||
|
|
||||||
// Use the older, purely gaussian beam profile; uncomment for speed
|
// Use the older, purely gaussian beam profile; uncomment for speed
|
||||||
#define USEGAUSSIAN
|
#define USEGAUSSIAN
|
||||||
|
|
||||||
// Use interlacing detection; may interfere with other shaders if combined
|
// Use interlacing detection; may interfere with other shaders if combined
|
||||||
#define INTERLACED
|
#define INTERLACED
|
||||||
|
|
||||||
// Macros.
|
// Macros.
|
||||||
#define FIX(c) max(abs(c), 1e-5);
|
#define FIX(c) max(abs(c), 1e-5);
|
||||||
#define PI 3.141592653589
|
#define PI 3.141592653589
|
||||||
|
|
||||||
#ifdef LINEAR_PROCESSING
|
#ifdef LINEAR_PROCESSING
|
||||||
# define TEX2D(c) pow(texture(Source, (c)), vec4(CRTgamma))
|
# define TEX2D(c) pow(texture(Source, (c)), vec4(CRTgamma))
|
||||||
#else
|
#else
|
||||||
# define TEX2D(c) texture(Source, (c))
|
# define TEX2D(c) texture(Source, (c))
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// aspect ratio
|
// aspect ratio
|
||||||
vec2 aspect = vec2(1.0, 0.75);
|
vec2 aspect = vec2(1.0, 0.75);
|
||||||
vec2 angle = vec2(0.0, 0.0);
|
vec2 angle = vec2(0.0, 0.0);
|
||||||
vec2 overscan = vec2(1.01, 1.01);
|
vec2 overscan = vec2(1.01, 1.01);
|
||||||
|
|
||||||
#pragma stage vertex
|
#pragma stage vertex
|
||||||
layout(location = 0) in vec4 Position;
|
layout(location = 0) in vec4 Position;
|
||||||
|
@ -86,58 +86,64 @@ layout(location = 5) out vec2 one;
|
||||||
layout(location = 6) out float mod_factor;
|
layout(location = 6) out float mod_factor;
|
||||||
|
|
||||||
float intersect(vec2 xy)
|
float intersect(vec2 xy)
|
||||||
{
|
{
|
||||||
float A = dot(xy,xy)+d*d;
|
float A = dot(xy,xy) + d*d;
|
||||||
float B = 2.0*(R*(dot(xy,sinangle)-d*cosangle.x*cosangle.y)-d*d);
|
float B = 2.0*(R*(dot(xy,sinangle)-d*cosangle.x*cosangle.y)-d*d);
|
||||||
float C = d*d + 2.0*R*d*cosangle.x*cosangle.y;
|
float C = d*d + 2.0*R*d*cosangle.x*cosangle.y;
|
||||||
|
|
||||||
return (-B-sqrt(B*B-4.0*A*C))/(2.0*A);
|
return (-B-sqrt(B*B-4.0*A*C))/(2.0*A);
|
||||||
}
|
}
|
||||||
|
|
||||||
vec2 bkwtrans(vec2 xy)
|
vec2 bkwtrans(vec2 xy)
|
||||||
{
|
{
|
||||||
float c = intersect(xy);
|
float c = intersect(xy);
|
||||||
vec2 point = vec2(c)*xy;
|
vec2 point = vec2(c)*xy;
|
||||||
point -= vec2(-R)*sinangle;
|
point -= vec2(-R)*sinangle;
|
||||||
point /= vec2(R);
|
point /= vec2(R);
|
||||||
vec2 tang = sinangle/cosangle;
|
vec2 tang = sinangle/cosangle;
|
||||||
vec2 poc = point/cosangle;
|
vec2 poc = point/cosangle;
|
||||||
|
|
||||||
float A = dot(tang,tang)+1.0;
|
float A = dot(tang,tang)+1.0;
|
||||||
float B = -2.0*dot(poc,tang);
|
float B = -2.0*dot(poc,tang);
|
||||||
float C = dot(poc,poc)-1.0;
|
float C = dot(poc,poc)-1.0;
|
||||||
|
|
||||||
float a = (-B+sqrt(B*B-4.0*A*C))/(2.0*A);
|
float a = (-B+sqrt(B*B-4.0*A*C))/(2.0*A);
|
||||||
vec2 uv = (point-a*sinangle)/cosangle;
|
vec2 uv = (point-a*sinangle)/cosangle;
|
||||||
float r = R*acos(a);
|
float r = R*acos(a);
|
||||||
|
|
||||||
return uv*r/sin(r/R);
|
return uv*r/sin(r/R);
|
||||||
}
|
}
|
||||||
|
|
||||||
vec2 fwtrans(vec2 uv)
|
vec2 fwtrans(vec2 uv)
|
||||||
{
|
{
|
||||||
float r = FIX(sqrt(dot(uv,uv)));
|
float r = FIX(sqrt(dot(uv,uv)));
|
||||||
uv *= sin(r/R)/r;
|
uv *= sin(r/R)/r;
|
||||||
float x = 1.0-cos(r/R);
|
float x = 1.0-cos(r/R);
|
||||||
float D = d/R + x*cosangle.x*cosangle.y+dot(uv,sinangle);
|
float D = d/R + x*cosangle.x*cosangle.y+dot(uv,sinangle);
|
||||||
|
|
||||||
return d*(uv*cosangle-x*sinangle)/D;
|
return d*(uv*cosangle-x*sinangle)/D;
|
||||||
}
|
}
|
||||||
|
|
||||||
vec3 maxscale()
|
vec3 maxscale()
|
||||||
{
|
{
|
||||||
vec2 c = bkwtrans(-R * sinangle / (1.0 + R/d*cosangle.x*cosangle.y));
|
vec2 c = bkwtrans(-R * sinangle / (1.0 + R/d*cosangle.x*cosangle.y));
|
||||||
vec2 a = vec2(0.5,0.5)*aspect;
|
vec2 a = vec2(0.5,0.5)*aspect;
|
||||||
vec2 lo = vec2(fwtrans(vec2(-a.x,c.y)).x,
|
vec2 lo = vec2(fwtrans(vec2(-a.x,c.y)).x,
|
||||||
fwtrans(vec2(c.x,-a.y)).y)/aspect;
|
fwtrans(vec2(c.x,-a.y)).y)/aspect;
|
||||||
vec2 hi = vec2(fwtrans(vec2(+a.x,c.y)).x,
|
vec2 hi = vec2(fwtrans(vec2(+a.x,c.y)).x,
|
||||||
fwtrans(vec2(c.x,+a.y)).y)/aspect;
|
fwtrans(vec2(c.x,+a.y)).y)/aspect;
|
||||||
return vec3((hi+lo)*aspect*0.5,max(hi.x-lo.x,hi.y-lo.y));
|
|
||||||
}
|
|
||||||
|
|
||||||
// Calculate the influence of a scanline on the current pixel.
|
return vec3((hi+lo)*aspect*0.5,max(hi.x-lo.x,hi.y-lo.y));
|
||||||
//
|
}
|
||||||
// 'distance' is the distance in texture coordinates from the current
|
|
||||||
// pixel to the scanline in question.
|
// Calculate the influence of a scanline on the current pixel.
|
||||||
// 'color' is the colour of the scanline at the horizontal location of
|
//
|
||||||
// the current pixel.
|
// 'distance' is the distance in texture coordinates from the current
|
||||||
vec4 scanlineWeights(float distance, vec4 color)
|
// pixel to the scanline in question.
|
||||||
{
|
// 'color' is the colour of the scanline at the horizontal location of
|
||||||
|
// the current pixel.
|
||||||
|
vec4 scanlineWeights(float distance, vec4 color)
|
||||||
|
{
|
||||||
// "wid" controls the width of the scanline beam, for each RGB
|
// "wid" controls the width of the scanline beam, for each RGB
|
||||||
// channel The "weights" lines basically specify the formula
|
// channel The "weights" lines basically specify the formula
|
||||||
// that gives you the profile of the beam, i.e. the intensity as
|
// that gives you the profile of the beam, i.e. the intensity as
|
||||||
|
@ -151,13 +157,15 @@ vec3 maxscale()
|
||||||
#ifdef USEGAUSSIAN
|
#ifdef USEGAUSSIAN
|
||||||
vec4 wid = 0.3 + 0.1 * pow(color, vec4(3.0));
|
vec4 wid = 0.3 + 0.1 * pow(color, vec4(3.0));
|
||||||
vec4 weights = vec4(distance / wid);
|
vec4 weights = vec4(distance / wid);
|
||||||
|
|
||||||
return 0.4 * exp(-weights * weights) / wid;
|
return 0.4 * exp(-weights * weights) / wid;
|
||||||
#else
|
#else
|
||||||
vec4 wid = 2.0 + 2.0 * pow(color, vec4(4.0));
|
vec4 wid = 2.0 + 2.0 * pow(color, vec4(4.0));
|
||||||
vec4 weights = vec4(distance / scanline_weight);
|
vec4 weights = vec4(distance / scanline_weight);
|
||||||
|
|
||||||
return 1.4 * exp(-pow(weights * inversesqrt(0.5 * wid), wid)) / (0.6 + 0.2 * wid);
|
return 1.4 * exp(-pow(weights * inversesqrt(0.5 * wid), wid)) / (0.6 + 0.2 * wid);
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
void main()
|
void main()
|
||||||
{
|
{
|
||||||
|
@ -176,7 +184,7 @@ void main()
|
||||||
one = ilfac / global.SourceSize.xy;
|
one = ilfac / global.SourceSize.xy;
|
||||||
|
|
||||||
// Resulting X pixel-coordinate of the pixel we're drawing.
|
// Resulting X pixel-coordinate of the pixel we're drawing.
|
||||||
mod_factor = TexCoord.x * (global.SourceSize.x / global.SourceSize.z) * (global.SourceSize.z / global.SourceSize.x);
|
mod_factor = TexCoord.x * global.SourceSize.x * global.OutputSize.x / global.SourceSize.x;
|
||||||
}
|
}
|
||||||
|
|
||||||
#pragma stage fragment
|
#pragma stage fragment
|
||||||
|
@ -191,58 +199,67 @@ layout(location = 0) out vec4 FragColor;
|
||||||
layout(set = 0, binding = 2) uniform sampler2D Source;
|
layout(set = 0, binding = 2) uniform sampler2D Source;
|
||||||
|
|
||||||
float intersect(vec2 xy)
|
float intersect(vec2 xy)
|
||||||
{
|
{
|
||||||
float A = dot(xy,xy)+d*d;
|
float A = dot(xy,xy) + d*d;
|
||||||
float B = 2.0*(R*(dot(xy,sinangle)-d*cosangle.x*cosangle.y)-d*d);
|
float B = 2.0*(R*(dot(xy,sinangle)-d*cosangle.x*cosangle.y) - d*d);
|
||||||
float C = d*d + 2.0*R*d*cosangle.x*cosangle.y;
|
float C = d*d + 2.0*R*d*cosangle.x*cosangle.y;
|
||||||
return (-B-sqrt(B*B-4.0*A*C))/(2.0*A);
|
|
||||||
}
|
return (-B-sqrt(B*B - 4.0*A*C))/(2.0*A);
|
||||||
|
}
|
||||||
|
|
||||||
vec2 bkwtrans(vec2 xy)
|
vec2 bkwtrans(vec2 xy)
|
||||||
{
|
{
|
||||||
float c = intersect(xy);
|
float c = intersect(xy);
|
||||||
vec2 point = vec2(c)*xy;
|
vec2 point = vec2(c)*xy;
|
||||||
|
|
||||||
point -= vec2(-R)*sinangle;
|
point -= vec2(-R)*sinangle;
|
||||||
point /= vec2(R);
|
point /= vec2(R);
|
||||||
|
|
||||||
vec2 tang = sinangle/cosangle;
|
vec2 tang = sinangle/cosangle;
|
||||||
vec2 poc = point/cosangle;
|
vec2 poc = point/cosangle;
|
||||||
|
|
||||||
float A = dot(tang,tang)+1.0;
|
float A = dot(tang,tang)+1.0;
|
||||||
float B = -2.0*dot(poc,tang);
|
float B = -2.0*dot(poc,tang);
|
||||||
float C = dot(poc,poc)-1.0;
|
float C = dot(poc,poc)-1.0;
|
||||||
|
|
||||||
float a = (-B+sqrt(B*B-4.0*A*C))/(2.0*A);
|
float a = (-B+sqrt(B*B-4.0*A*C))/(2.0*A);
|
||||||
vec2 uv = (point-a*sinangle)/cosangle;
|
vec2 uv = (point-a*sinangle)/cosangle;
|
||||||
float r = R*acos(a);
|
float r = R*acos(a);
|
||||||
|
|
||||||
return uv*r/sin(r/R);
|
return uv*r/sin(r/R);
|
||||||
}
|
}
|
||||||
|
|
||||||
vec2 fwtrans(vec2 uv)
|
vec2 fwtrans(vec2 uv)
|
||||||
{
|
{
|
||||||
float r = FIX(sqrt(dot(uv,uv)));
|
float r = FIX(sqrt(dot(uv,uv)));
|
||||||
uv *= sin(r/R)/r;
|
uv *= sin(r/R)/r;
|
||||||
float x = 1.0-cos(r/R);
|
float x = 1.0-cos(r/R);
|
||||||
float D = d/R + x*cosangle.x*cosangle.y+dot(uv,sinangle);
|
float D = d/R + x*cosangle.x*cosangle.y + dot(uv,sinangle);
|
||||||
|
|
||||||
return d*(uv*cosangle-x*sinangle)/D;
|
return d*(uv*cosangle-x*sinangle)/D;
|
||||||
}
|
}
|
||||||
|
|
||||||
vec3 maxscale()
|
vec3 maxscale()
|
||||||
{
|
{
|
||||||
vec2 c = bkwtrans(-R * sinangle / (1.0 + R/d*cosangle.x*cosangle.y));
|
vec2 c = bkwtrans(-R * sinangle / (1.0 + R/d*cosangle.x*cosangle.y));
|
||||||
vec2 a = vec2(0.5,0.5)*aspect;
|
vec2 a = vec2(0.5,0.5)*aspect;
|
||||||
vec2 lo = vec2(fwtrans(vec2(-a.x,c.y)).x,
|
|
||||||
fwtrans(vec2(c.x,-a.y)).y)/aspect;
|
|
||||||
vec2 hi = vec2(fwtrans(vec2(+a.x,c.y)).x,
|
|
||||||
fwtrans(vec2(c.x,+a.y)).y)/aspect;
|
|
||||||
return vec3((hi+lo)*aspect*0.5,max(hi.x-lo.x,hi.y-lo.y));
|
|
||||||
}
|
|
||||||
|
|
||||||
// Calculate the influence of a scanline on the current pixel.
|
vec2 lo = vec2(fwtrans(vec2(-a.x,c.y)).x,
|
||||||
//
|
fwtrans(vec2(c.x, -a.y)).y)/aspect;
|
||||||
// 'distance' is the distance in texture coordinates from the current
|
vec2 hi = vec2(fwtrans(vec2(+a.x,c.y)).x,
|
||||||
// pixel to the scanline in question.
|
fwtrans(vec2(c.x, +a.y)).y)/aspect;
|
||||||
// 'color' is the colour of the scanline at the horizontal location of
|
|
||||||
// the current pixel.
|
return vec3((hi+lo)*aspect*0.5,max(hi.x-lo.x, hi.y-lo.y));
|
||||||
vec4 scanlineWeights(float distance, vec4 color)
|
}
|
||||||
{
|
|
||||||
|
// Calculate the influence of a scanline on the current pixel.
|
||||||
|
//
|
||||||
|
// 'distance' is the distance in texture coordinates from the current
|
||||||
|
// pixel to the scanline in question.
|
||||||
|
// 'color' is the colour of the scanline at the horizontal location of
|
||||||
|
// the current pixel.
|
||||||
|
vec4 scanlineWeights(float distance, vec4 color)
|
||||||
|
{
|
||||||
// "wid" controls the width of the scanline beam, for each RGB
|
// "wid" controls the width of the scanline beam, for each RGB
|
||||||
// channel The "weights" lines basically specify the formula
|
// channel The "weights" lines basically specify the formula
|
||||||
// that gives you the profile of the beam, i.e. the intensity as
|
// that gives you the profile of the beam, i.e. the intensity as
|
||||||
|
@ -253,34 +270,36 @@ vec3 maxscale()
|
||||||
// independent of its width. That is, for a narrower beam
|
// independent of its width. That is, for a narrower beam
|
||||||
// "weights" should have a higher peak at the center of the
|
// "weights" should have a higher peak at the center of the
|
||||||
// scanline than for a wider beam.
|
// scanline than for a wider beam.
|
||||||
#ifdef USEGAUSSIAN
|
#ifdef USEGAUSSIAN
|
||||||
vec4 wid = 0.3 + 0.1 * pow(color, vec4(3.0));
|
vec4 wid = 0.3 + 0.1 * pow(color, vec4(3.0));
|
||||||
vec4 weights = vec4(distance / wid);
|
vec4 weights = vec4(distance / wid);
|
||||||
return 0.4 * exp(-weights * weights) / wid;
|
return 0.4 * exp(-weights * weights) / wid;
|
||||||
#else
|
#else
|
||||||
vec4 wid = 2.0 + 2.0 * pow(color, vec4(4.0));
|
vec4 wid = 2.0 + 2.0 * pow(color, vec4(4.0));
|
||||||
vec4 weights = vec4(distance / scanline_weight);
|
vec4 weights = vec4(distance / scanline_weight);
|
||||||
return 1.4 * exp(-pow(weights * inversesqrt(0.5 * wid), wid)) / (0.6 + 0.2 * wid);
|
return 1.4 * exp(-pow(weights * inversesqrt(0.5 * wid), wid)) / (0.6 + 0.2 * wid);
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
vec2 transform(vec2 coord)
|
vec2 transform(vec2 coord)
|
||||||
{
|
{
|
||||||
coord *= global.SourceSize.xy / global.SourceSize.zw;
|
coord *= global.SourceSize.xy;
|
||||||
coord = (coord-vec2(0.5))*aspect*stretch.z+stretch.xy;
|
coord = (coord-vec2(0.5))*aspect*stretch.z+stretch.xy;
|
||||||
return (bkwtrans(coord)/vec2(overscan_x / 100.0, overscan_y / 100.0)/aspect+vec2(0.5)) * global.SourceSize.zw / global.SourceSize.xy;
|
|
||||||
}
|
return (bkwtrans(coord)/vec2(overscan_x / 100.0, overscan_y / 100.0)/aspect+vec2(0.5)) * global.SourceSize.xy;
|
||||||
|
}
|
||||||
|
|
||||||
float corner(vec2 coord)
|
float corner(vec2 coord)
|
||||||
{
|
{
|
||||||
// coord *= global.SourceSize.xy / global.SourceSize.zw;
|
// coord *= global.SourceSize.xy / global.SourceSize.zw;
|
||||||
coord = (coord - vec2(0.5)) * vec2(overscan_x / 100.0, overscan_y / 100.0) + vec2(0.5);
|
coord = (coord - vec2(0.5)) * vec2(overscan_x / 100.0, overscan_y / 100.0) + vec2(0.5);
|
||||||
coord = min(coord, vec2(1.0)-coord) * aspect;
|
coord = min(coord, vec2(1.0) - coord) * aspect;
|
||||||
vec2 cdist = vec2(cornersize);
|
vec2 cdist = vec2(cornersize);
|
||||||
coord = (cdist - min(coord,cdist));
|
coord = (cdist - min(coord, cdist));
|
||||||
float dist = sqrt(dot(coord,coord));
|
float dist = sqrt(dot(coord, coord));
|
||||||
return clamp((cdist.x-dist)*cornersmooth,0.0, 1.0);
|
|
||||||
}
|
return clamp((cdist.x-dist)*cornersmooth, 0.0, 1.0);
|
||||||
|
}
|
||||||
|
|
||||||
void main()
|
void main()
|
||||||
{
|
{
|
||||||
|
@ -316,9 +335,9 @@ void main()
|
||||||
// Of all the pixels that are mapped onto the texel we are
|
// Of all the pixels that are mapped onto the texel we are
|
||||||
// currently rendering, which pixel are we currently rendering?
|
// currently rendering, which pixel are we currently rendering?
|
||||||
#ifdef INTERLACED
|
#ifdef INTERLACED
|
||||||
vec2 ilvec = vec2(0.0,ilfac.y > 1.5 ? mod(float(global.FrameCount),2.0) : 0.0);
|
vec2 ilvec = vec2(0.0, ilfac.y > 1.5 ? mod(float(global.FrameCount), 2.0) : 0.0);
|
||||||
#else
|
#else
|
||||||
vec2 ilvec = vec2(0.0,ilfac.y);
|
vec2 ilvec = vec2(0.0, ilfac.y);
|
||||||
#endif
|
#endif
|
||||||
vec2 ratio_scale = (xy * global.SourceSize.xy - vec2(0.5, 0.5) + ilvec)/ilfac;
|
vec2 ratio_scale = (xy * global.SourceSize.xy - vec2(0.5, 0.5) + ilvec)/ilfac;
|
||||||
#ifdef OVERSAMPLE
|
#ifdef OVERSAMPLE
|
||||||
|
@ -346,18 +365,24 @@ void main()
|
||||||
// Calculate the effective colour of the current and next
|
// Calculate the effective colour of the current and next
|
||||||
// scanlines at the horizontal location of the current pixel,
|
// scanlines at the horizontal location of the current pixel,
|
||||||
// using the Lanczos coefficients above.
|
// using the Lanczos coefficients above.
|
||||||
vec4 col = clamp(mat4(
|
vec4 col = clamp(
|
||||||
|
mat4(
|
||||||
TEX2D(xy + vec2(-one.x, 0.0)),
|
TEX2D(xy + vec2(-one.x, 0.0)),
|
||||||
TEX2D(xy),
|
TEX2D(xy),
|
||||||
TEX2D(xy + vec2(one.x, 0.0)),
|
TEX2D(xy + vec2(one.x, 0.0)),
|
||||||
TEX2D(xy + vec2(2.0 * one.x, 0.0))) * coeffs,
|
TEX2D(xy + vec2(2.0 * one.x, 0.0))
|
||||||
0.0, 1.0);
|
) * coeffs,
|
||||||
vec4 col2 = clamp(mat4(
|
0.0, 1.0
|
||||||
|
);
|
||||||
|
vec4 col2 = clamp(
|
||||||
|
mat4(
|
||||||
TEX2D(xy + vec2(-one.x, one.y)),
|
TEX2D(xy + vec2(-one.x, one.y)),
|
||||||
TEX2D(xy + vec2(0.0, one.y)),
|
TEX2D(xy + vec2(0.0, one.y)),
|
||||||
TEX2D(xy + one),
|
TEX2D(xy + one),
|
||||||
TEX2D(xy + vec2(2.0 * one.x, one.y))) * coeffs,
|
TEX2D(xy + vec2(2.0 * one.x, one.y))
|
||||||
0.0, 1.0);
|
) * coeffs,
|
||||||
|
0.0, 1.0
|
||||||
|
);
|
||||||
|
|
||||||
#ifndef LINEAR_PROCESSING
|
#ifndef LINEAR_PROCESSING
|
||||||
col = pow(col , vec4(CRTgamma));
|
col = pow(col , vec4(CRTgamma));
|
||||||
|
@ -369,12 +394,12 @@ void main()
|
||||||
vec4 weights = scanlineWeights(uv_ratio.y, col);
|
vec4 weights = scanlineWeights(uv_ratio.y, col);
|
||||||
vec4 weights2 = scanlineWeights(1.0 - uv_ratio.y, col2);
|
vec4 weights2 = scanlineWeights(1.0 - uv_ratio.y, col2);
|
||||||
#ifdef OVERSAMPLE
|
#ifdef OVERSAMPLE
|
||||||
uv_ratio.y =uv_ratio.y+1.0/3.0*filter_;
|
uv_ratio.y = uv_ratio.y + 1.0/3.0*filter_;
|
||||||
weights = (weights+scanlineWeights(uv_ratio.y, col))/3.0;
|
weights = (weights + scanlineWeights(uv_ratio.y, col))/3.0;
|
||||||
weights2=(weights2+scanlineWeights(abs(1.0-uv_ratio.y), col2))/3.0;
|
weights2 = (weights2 + scanlineWeights(abs(1.0-uv_ratio.y), col2))/3.0;
|
||||||
uv_ratio.y =uv_ratio.y-2.0/3.0*filter_;
|
uv_ratio.y = uv_ratio.y - 2.0/3.0*filter_;
|
||||||
weights=weights+scanlineWeights(abs(uv_ratio.y), col)/3.0;
|
weights = weights + scanlineWeights(abs(uv_ratio.y), col)/3.0;
|
||||||
weights2=weights2+scanlineWeights(abs(1.0-uv_ratio.y), col2)/3.0;
|
weights2 = weights2 + scanlineWeights(abs(1.0-uv_ratio.y), col2)/3.0;
|
||||||
#endif
|
#endif
|
||||||
vec3 mul_res = (col * weights + col2 * weights2).rgb * vec3(cval);
|
vec3 mul_res = (col * weights + col2 * weights2).rgb * vec3(cval);
|
||||||
|
|
||||||
|
@ -391,5 +416,5 @@ void main()
|
||||||
// Convert the image gamma for display on our output device.
|
// Convert the image gamma for display on our output device.
|
||||||
mul_res = pow(mul_res, vec3(1.0 / monitorgamma));
|
mul_res = pow(mul_res, vec3(1.0 / monitorgamma));
|
||||||
|
|
||||||
FragColor = vec4(mul_res, 1.0);
|
FragColor = vec4(mul_res, 1.0);
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in a new issue