mirror of
https://github.com/italicsjenga/slang-shaders.git
synced 2024-11-24 16:41:31 +11:00
1137 lines
37 KiB
Plaintext
1137 lines
37 KiB
Plaintext
vec3 texture_BILINEAR(sampler2D t, vec2 uv, vec4 texSize, float k) {
|
|
uv = uv -texSize.zw*0.5*k;
|
|
vec2 texelSize = texSize.zw * k;
|
|
vec2 f = fract( uv * texSize.xy );
|
|
uv += ( .5 - f ) * texelSize; // move uv to texel centre
|
|
vec3 tl = texture(t, uv).rgb;
|
|
vec3 tr = texture(t, uv + vec2(texelSize.x, 0.0)).rgb;
|
|
vec3 bl = texture(t, uv + vec2(0.0, texelSize.y)).rgb;
|
|
vec3 br = texture(t, uv + vec2(texelSize.x, texelSize.y)).rgb;
|
|
vec3 tA = mix( tl, tr, f.x );
|
|
vec3 tB = mix( bl, br, f.x );
|
|
return mix( tA, tB, f.y );
|
|
}
|
|
|
|
|
|
vec3 texture_BILINEAR_X(sampler2D t, vec2 uv, vec4 texSize, float k) {
|
|
uv = uv -texSize.zw*0.5*vec2(k,1.0);
|
|
vec2 texelSize = texSize.zw * vec2(k, 1.0);
|
|
vec2 f = fract( uv * texSize.xy );
|
|
uv += ( .5 - f ) * texelSize; // move uv to texel centre
|
|
vec3 tl = texture(t, uv).rgb;
|
|
vec3 tr = texture(t, uv + vec2(texelSize.x, 0.0)).rgb;
|
|
return mix( tl, tr, f.x );
|
|
}
|
|
|
|
|
|
float clamp_smooth(float x, float amin, float amax) {
|
|
float sharp = 0.0;
|
|
return mix(amin, amax, smoothstep(amin-sharp, amax+sharp, x));
|
|
}
|
|
|
|
vec3 clamp_smooth(vec3 x, vec3 amin, vec3 amax) {
|
|
float sharp = 0.0;
|
|
return mix(amin, amax, smoothstep(amin-sharp, amax+sharp, x));
|
|
}
|
|
|
|
vec2 clamp_smooth(vec2 x, vec2 a, vec2 b) {
|
|
float sharp = 0.0;
|
|
return mix(a, b, smoothstep(a-sharp, b+sharp, x));
|
|
}
|
|
|
|
vec2 coords_QULEZ_faster(vec2 co, vec4 texsize){
|
|
//based on idea: https://iquilezles.org/articles/texture/
|
|
co = co * texsize.xy + vec2(0.5);
|
|
vec2 i = floor(co);
|
|
vec2 f = sin((co - i - 0.5) * pi) * 0.5 + 0.5 ;
|
|
co = i + f;
|
|
co = (co - vec2(0.5) ) * texsize.zw;
|
|
return co;
|
|
}
|
|
|
|
vec2 coords_QULEZ(vec2 co, vec4 texsize){
|
|
//https://iquilezles.org/articles/texture/
|
|
co = co * texsize.xy + vec2(0.5, 0.5);
|
|
|
|
vec2 i = floor(co);
|
|
vec2 f = co - i;
|
|
f = (f * f) *
|
|
(f * (f * (f * 6.0 - vec2(15.0, 15.0)) + vec2(10.0, 10.0)));
|
|
|
|
|
|
co = i + f;
|
|
co = (co - vec2(0.5, 0.5)) * (texsize.zw);
|
|
return co;
|
|
}
|
|
|
|
vec4 texture_QUILEZ(sampler2D tex, vec2 co, vec4 texsize) {
|
|
co = coords_QULEZ(co, texsize);
|
|
return texture(tex, co);
|
|
}
|
|
|
|
|
|
vec4 texture_NEAREST(sampler2D tex, vec2 co_linear, vec4 tex_size) {
|
|
//return nearest sampling from a linear filtered texture
|
|
vec2 integerCoords = floor(co_linear.xy * tex_size.xy);
|
|
vec2 co_nearest = (integerCoords + 0.5) * tex_size.zw; // Aggiungi 0.5 per centrare il texel
|
|
return texture(tex, co_nearest);
|
|
}
|
|
|
|
float DigitBin( const int x )
|
|
{
|
|
return x==0?480599.0:x==1?139810.0:x==2?476951.0:x==3?476999.0:x==4?350020.0:x==5?464711.0:x==6?464727.0:x==7?476228.0:x==8?481111.0:x==9?481095.0:0.0;
|
|
}
|
|
|
|
|
|
float PrintValue( vec2 vStringCoords, float fValue, float fMaxDigits, float fDecimalPlaces )
|
|
{
|
|
if ((vStringCoords.y < 0.0) || (vStringCoords.y >= 1.0)) return 0.0;
|
|
|
|
bool bNeg = ( fValue < 0.0 );
|
|
fValue = abs(fValue);
|
|
|
|
float fLog10Value = log2(abs(fValue)) / log2(10.0);
|
|
float fBiggestIndex = max(floor(fLog10Value), 0.0);
|
|
float fDigitIndex = fMaxDigits - floor(vStringCoords.x);
|
|
float fCharBin = 0.0;
|
|
if(fDigitIndex > (-fDecimalPlaces - 1.01)) {
|
|
if(fDigitIndex > fBiggestIndex) {
|
|
if((bNeg) && (fDigitIndex < (fBiggestIndex+1.5))) fCharBin = 1792.0;
|
|
} else {
|
|
if(fDigitIndex == -1.0) {
|
|
if(fDecimalPlaces > 0.0) fCharBin = 2.0;
|
|
} else {
|
|
float fReducedRangeValue = fValue;
|
|
if(fDigitIndex < 0.0) { fReducedRangeValue = fract( fValue ); fDigitIndex += 1.0; }
|
|
float fDigitValue = (abs(fReducedRangeValue / (pow(10.0, fDigitIndex))));
|
|
fCharBin = DigitBin(int(floor(mod(fDigitValue, 10.0))));
|
|
}
|
|
}
|
|
}
|
|
return floor(mod((fCharBin / pow(2.0, floor(fract(vStringCoords.x) * 4.0) + (floor(vStringCoords.y * 5.0) * 4.0))), 2.0));
|
|
}
|
|
|
|
vec3 PrintValueVec3( vec2 vStringCoords, vec2 FragCoord, float fValue, float fMaxDigits, float fDecimalPlaces ) {
|
|
vec3 vColour = vec3(0.0);
|
|
|
|
// Multiples of 4x5 work best
|
|
vec2 vFontSize = vec2(8.0, 15.0);
|
|
|
|
|
|
// Print a custom value
|
|
vec2 vPixelCoord1 = vec2(5.0, 5.0);
|
|
|
|
FragCoord.y = (vFontSize.y*2.0) - FragCoord.y;
|
|
//FragCoord.y = (vFontSize.y*2.0) - FragCoord.y;
|
|
//FragCoord.x -= 100;
|
|
|
|
float customDigit = PrintValue( ( FragCoord - vPixelCoord1 ) / vFontSize, fValue, fMaxDigits, fDecimalPlaces);
|
|
vColour = mix( vColour, vec3(0.0, 1.0, 1.0), customDigit);
|
|
|
|
return vColour;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// mix_step returns a or b, depending on the mix value.
|
|
// mix is supposed to have just 2 values, 1.0 or 0.0; //FIXME: mix argument could be vec.
|
|
|
|
vec2 mix_step(vec2 a, vec2 b, float m){
|
|
return mix(a,b,m); //114
|
|
//return ( b-a )* m + a; //113.5
|
|
//if (m==0.0) return a ; return b; //113.5
|
|
//return (a * (1 - m)) + (b * m) ; //112
|
|
}
|
|
vec3 mix_step(vec3 a, vec3 b, float m){
|
|
return mix(a,b,m);
|
|
//return ( b-a )* m + a;
|
|
//if (m==0.0) return a ; return b;
|
|
//return (a * (1 - m)) + (b * m) ;
|
|
}
|
|
vec3 mix_step3(vec3 a, vec3 b, float m){
|
|
return mix(a,b,m);
|
|
//return ( b-a )* m + a;
|
|
//if (m==0.0) return a ; return b;
|
|
//return (a * (1 - m)) + (b * m) ;
|
|
}
|
|
vec4 mix_step(vec4 a, vec4 b, float m){
|
|
return mix(a,b,m);
|
|
//return ( b-a )* m + a;
|
|
//if (m==0.0) return a ; return b;
|
|
//return (a * (1 - m)) + (b * m) ;
|
|
}
|
|
float mix_step(float a, float b, float m){
|
|
return mix(a,b,m);
|
|
//return ( b-a )* m + a;
|
|
//if (m==0.0) return a ; return b;
|
|
//return (a * (1 - m)) + (b * m) ;
|
|
}
|
|
|
|
|
|
//REFLECTION RELATED START
|
|
float circle_smooth(vec2 coords, vec2 middle, float f_radius, float FALLOFF) {
|
|
//Draw a circle with smoothed borders:
|
|
float fdistance=distance(middle, vec2(coords.x, coords.y));
|
|
float circle = (1-smoothstep(f_radius-FALLOFF, f_radius+FALLOFF, fdistance));
|
|
return circle;
|
|
}
|
|
|
|
float square_smooth(vec2 co, vec2 corner, float size, float smoothshade) {
|
|
//Draws a square with smooth borders:
|
|
vec4 rect = vec4(corner.x, corner.y, corner.x+size, corner.y+size);
|
|
vec2 hv = smoothstep(rect.xy - smoothshade, rect.xy, co) * smoothstep(co - smoothshade, co, rect.zw);
|
|
return hv.x * hv.y;
|
|
}
|
|
|
|
float corners_shade(vec2 co, float size_multiplier){
|
|
//Draws 4 smooth squares or circles in the corners.
|
|
//They are intended to modulate the blur radius and the strength of the reflection.
|
|
|
|
/*
|
|
vec4 circles;
|
|
float circle_radius = size; //0.13?
|
|
float circle_falloff = smoothsize; //0.05?
|
|
float circle_power =2.0;
|
|
circles.x = circle_smooth(co, vec2(0.0,0.0), circle_radius, circle_falloff) * circle_power;
|
|
circles.y = circle_smooth(co, vec2(0.0,1.0), circle_radius, circle_falloff) * circle_power;
|
|
circles.z = circle_smooth(co, vec2(1.0,0.0), circle_radius, circle_falloff) * circle_power;
|
|
circles.w = circle_smooth(co, vec2(1.0,1.0), circle_radius, circle_falloff) * circle_power;
|
|
|
|
float circle = max(max(max(circles.x, circles.y), circles.z), circles.w);
|
|
circle = min(circle, 1.0);
|
|
circle = 1-circle;
|
|
|
|
return circle;
|
|
*/
|
|
vec4 squares;
|
|
float squaresize = BEZEL_REFL_CORNER_BLANK_SIZE * size_multiplier;
|
|
float squarefade = BEZEL_REFL_CORNER_BLANK_SHADE * size_multiplier;
|
|
//(vec2 co, vec2 corner, float size, float smoothshade) {
|
|
squares.x = square_smooth(co, vec2(0.0,0.0), squaresize, squarefade);
|
|
squares.y = square_smooth(co, vec2(1.0 - squaresize, 0.0), squaresize, squarefade);
|
|
squares.z = square_smooth(co, vec2(0.0, 1-squaresize), squaresize, squarefade);
|
|
squares.w = square_smooth(co, vec2(1-squaresize, 1-squaresize), squaresize, squarefade);
|
|
return max(max(max(squares.x, squares.y), squares.z), squares.w);
|
|
}
|
|
//REFLECTION RELATED ENDS
|
|
|
|
|
|
vec3 pixel_push_luminance(vec3 c, float strength) {
|
|
//if (strength == 0.0) return c; //lighter without the check.
|
|
float whiteness = max(max(c.r, c.g), c.b);
|
|
whiteness = clamp(whiteness, 0.0, 1.0);
|
|
return c * (1+vec3((1-whiteness) * strength));
|
|
}
|
|
|
|
/*
|
|
* Superseeded by stage1/stage2
|
|
vec3 apply_fuzzy_main_pass(vec3 color_in) {
|
|
vec3 color_out = color_in;
|
|
|
|
if (DO_CCORRECTION == 1.0) {
|
|
color_out = pow(color_out, vec3(IN_GLOW_GAMMA * GAMMA_OUT));
|
|
}
|
|
|
|
if (DO_IN_GLOW == 1.0)
|
|
color_out = color_out*IN_GLOW_POWER;
|
|
|
|
|
|
if (DO_PIXELGRID == 1.0) {
|
|
float m1 = (PIXELGRID_MAX_W + PIXELGRID_MIN_W) * 0.5;
|
|
m1 = mix(1.0, m1, DO_PIXELGRID_W);
|
|
|
|
float m2 = (PIXELGRID_MAX_H + PIXELGRID_MIN_H) * 0.5;
|
|
m2 = mix(1.0, m2, DO_PIXELGRID_H);
|
|
|
|
float m3 = mix(1.0, 0.75, PIXELGRID_Y_MASK);
|
|
|
|
color_out = (color_out * m1) * (m2 * m3);
|
|
}
|
|
|
|
if (DO_HALO == 1.0)
|
|
color_out += pow(color_in,vec3(HALO_GAMMA))*HALO_POWER;
|
|
|
|
|
|
if (DO_VIGNETTE == 1.0)
|
|
color_out *= 0.8 * (V_POWER);
|
|
return color_out;
|
|
}
|
|
*/
|
|
|
|
float get_halo_ungain_factor() {
|
|
return mix(1.0,
|
|
max(IN_GLOW_POWER, 1.0),
|
|
DO_CCORRECTION
|
|
);
|
|
}
|
|
|
|
vec2 apply_fuzzy_main_pass_stage_1() {
|
|
//This simulates the final pass pixel processing so that previous passes like
|
|
//reflections, full screen luminance zoom and ambient light
|
|
//can react accordingly without doing the same thing twice.
|
|
//For speed reasons, this lives in vertex shader and will output
|
|
//a vec2(mul factor, pow factor)
|
|
//in fragment shader one will pow(pow factor)*multiply factor;
|
|
|
|
float color_in = 1.0;
|
|
float color_out = 1.0;
|
|
float gamma_out = 1.0;
|
|
|
|
float halo_power_adapted;
|
|
halo_power_adapted = HALO_POWER;
|
|
if (HALO_NO_PREGAIN == 1.0) {
|
|
halo_power_adapted /= get_halo_ungain_factor();
|
|
}
|
|
if (HALO_POWER < 0.0)
|
|
halo_power_adapted = -halo_power_adapted/10.0;
|
|
|
|
if (DO_CCORRECTION == 1.0) {
|
|
color_out = pow(color_in, GAMMA_OUT); //<- nonsense
|
|
gamma_out = gamma_out * GAMMA_OUT;
|
|
gamma_out = gamma_out * IN_GLOW_GAMMA;
|
|
color_out = pow(color_out,IN_GLOW_GAMMA)*IN_GLOW_POWER;
|
|
}
|
|
|
|
if (DO_PIXELGRID == 1.0) {
|
|
color_out *= 1- DO_PIXELGRID_H * 0.5 ; //Half color if scanline.
|
|
color_out *= 1- DO_PIXELGRID_W * 0.5 ; //Half color if Hmask.
|
|
color_out *= 1- PIXELGRID_Y_MASK * 0.2 ; //Strip at most 20% if level 2 ymask.
|
|
}
|
|
|
|
|
|
if (DO_HALO == 1.0) {
|
|
color_out += color_in*halo_power_adapted / HALO_GAMMA;
|
|
gamma_out = gamma_out * mix(1.0, HALO_GAMMA_OUT, halo_power_adapted*0.25) ;
|
|
}
|
|
|
|
if (DO_VIGNETTE == 1.0)
|
|
color_out *= 0.8 * (V_POWER);
|
|
|
|
|
|
|
|
return vec2(color_out/color_in, gamma_out );
|
|
}
|
|
|
|
vec3 apply_fuzzy_main_pass_stage_2(vec3 pixel_in, vec2 stage1 ) {
|
|
//This gets the output of stage_1 to apply its pow and mul.
|
|
return pow(pixel_in, vec3(stage1.y)) * stage1.x;
|
|
}
|
|
|
|
vec2 offsets_from_float(float in_param, int range){
|
|
return vec2(
|
|
(int(in_param) % range) - range*0.5,
|
|
floor(in_param / range) - range*0.5
|
|
);
|
|
}
|
|
|
|
/*vec2 circles(float param, float c_radius, float aspect, float directions) {
|
|
//given a 1d input param return full circles increasing radius.
|
|
param = param*(pi/directions);
|
|
float m = (c_radius * floor(param/pi)) * 100;
|
|
return vec2(m * sin(param) * aspect, m * cos(param)) * vec2(aspect,1.0);
|
|
}
|
|
|
|
vec2 spiral(float param,float spr_radius,vec2 spr_offset, vec2 spr_scale) {
|
|
//given a 1d input param returns a spiral
|
|
float m = spr_radius * param;
|
|
return vec2(m * sin(param), m * cos(param)) * spr_scale + spr_offset;
|
|
}
|
|
*/
|
|
bool similar(float a, float b, float threshold) {
|
|
return abs(a-b) < threshold;
|
|
}
|
|
|
|
bool vec2_similar(vec2 a, vec2 b, float threshold) {
|
|
return abs(a.x-b.x) < threshold && abs(a.y-b.y) < threshold;
|
|
}
|
|
|
|
|
|
vec2 zoom(vec2 in_coords, float zoom_factor) {
|
|
float off = 1.0/(zoom_factor*2.0) - 0.5;
|
|
return (in_coords/zoom_factor)-off;
|
|
}
|
|
|
|
float zoom1D(float in_coord, float zoom_factor) {
|
|
float off = 1.0/(zoom_factor*2.0) - 0.5;
|
|
return (in_coord/zoom_factor)-off;
|
|
}
|
|
|
|
vec2 zoomxy(vec2 in_coords, vec2 zoom_factor) {
|
|
vec2 off = 1.0/(zoom_factor*2.0) - 0.5;
|
|
return (in_coords/zoom_factor)-off;
|
|
}
|
|
|
|
vec2 zoomout_coords(vec2 in_coords, float zoom_out, float aspect) {
|
|
// to convert to standard zoom:
|
|
// zoomout_coords(x) = zoom( 1/(x+1) );
|
|
|
|
|
|
vec2 zoom = vec2( 1 + zoom_out,
|
|
1 + (zoom_out * aspect)
|
|
);
|
|
|
|
vec2 offset = vec2( (zoom.x-1.0) / 2.0,
|
|
(zoom.y-1.0) / 2.0
|
|
);
|
|
return (in_coords * zoom) - offset;
|
|
}
|
|
|
|
bool scanline_have_to_flicker(bool is_interlaced) {
|
|
float scanline_flickering = DO_PIXELGRID * PIXELGRID_INTR_FLICK_MODE;
|
|
return ((scanline_flickering == 1.0) || ((scanline_flickering==2.0) && is_interlaced ));
|
|
}
|
|
|
|
bool is_interlaced() {
|
|
return (params.OriginalSize.y > MIN_LINES_INTERLACED);
|
|
}
|
|
|
|
float scale_to_range(float x, float dmin, float dmax) {
|
|
//Scales 0..1 range to a..b range
|
|
return ( (dmax-dmin) * x ) + dmin;
|
|
}
|
|
|
|
vec3 scale_to_range_vec3(vec3 x, float dmin, float dmax) {
|
|
//Scales 0..1 range to a..b range
|
|
return ( (dmax-dmin) * x ) + dmin;
|
|
}
|
|
|
|
vec3 scale_to_range_vec3(vec3 x, vec3 dmin, vec3 dmax) {
|
|
//Scales 0..1 range to a..b range
|
|
return ( (dmax-dmin) * x ) + dmin;
|
|
}
|
|
vec2 scale_to_range_vec2(vec2 x, float dmin, float dmax) {
|
|
//Scales 0..1 range to a..b range
|
|
return ( (dmax-dmin) * x ) + dmin;
|
|
}
|
|
|
|
float map_range(float value, float min_in, float max_in, float min_out, float max_out) {
|
|
//Scales value in [min_in - max_in] to [min_out - max_out]
|
|
return min_out + (value - min_in) * (max_out - min_out) / (max_in - min_in);
|
|
}
|
|
|
|
vec3 map_range(vec3 value, float min_in, float max_in, float min_out, float max_out) {
|
|
//Scales value in [min_in - max_in] to [min_out - max_out]
|
|
return min_out + (value - min_in) * (max_out - min_out) / (max_in - min_in);
|
|
}
|
|
|
|
float normalize_range(float value, float min_in, float max_in) {
|
|
//Scales value in [min_in - max_in] to 0..1
|
|
return (value - min_in) / (max_in - min_in);
|
|
}
|
|
|
|
vec3 apply_contrast_brightness(vec3 c, float contrast, float brightness) {
|
|
return scale_to_range_vec3(c, -contrast, 1+contrast) + brightness;
|
|
}
|
|
|
|
float apply_contrast_brightness(float c, float contrast, float brightness) {
|
|
return scale_to_range(c, -contrast, 1+contrast) + brightness;
|
|
}
|
|
|
|
float round_step(float f, float p) {
|
|
return floor(f*p)/p;
|
|
}
|
|
|
|
#define VEC2_RND_A_B vec2(12.9898, 78.233)
|
|
#define RND_C 43758.5453
|
|
|
|
float random(float power, vec2 seed) {
|
|
//From pal-singlepass.slang
|
|
//https://github.com/svofski/CRT
|
|
//Copyright (c) 2016, Viacheslav Slavinsky
|
|
//All rights reserved.
|
|
float dt = dot(seed.xy, VEC2_RND_A_B);
|
|
float sn = mod(dt,3.14);
|
|
|
|
float noise_out = fract(sin(sn) * RND_C);
|
|
|
|
noise_out = scale_to_range(noise_out, -power, power);
|
|
return noise_out;
|
|
}
|
|
|
|
//The following produces weird results when with dynamic seed like framecount.
|
|
float random_fast(float power, vec2 seed) {
|
|
float noise_out = fract(sin(dot(seed.xy, VEC2_RND_A_B)) * RND_C);
|
|
noise_out = scale_to_range(noise_out, -power, power);
|
|
return noise_out;
|
|
}
|
|
|
|
|
|
|
|
//CURVATURE
|
|
#define corner_aspect vec2(1.0, 0.75)
|
|
float fn_border(vec2 coord) {
|
|
coord = (coord - vec2(0.5)) + vec2(0.5, 0.5);
|
|
coord = min(coord, vec2(1.0) - coord) * corner_aspect;
|
|
vec2 cdist = vec2(GEOM_CORNER_SIZE);
|
|
coord = (cdist - min(coord, cdist));
|
|
float dist = sqrt(dot(coord, coord));
|
|
return clamp((cdist.x - dist)*GEOM_CORNER_SMOOTH, 0.0, 1.0);
|
|
}
|
|
|
|
float border(vec2 coord) {
|
|
coord = (coord - vec2(0.5)) + vec2(0.5, 0.5);
|
|
coord = min(coord, vec2(1.0) - coord) * corner_aspect;
|
|
vec2 cdist = vec2(GEOM_CORNER_SIZE);
|
|
coord = (cdist - min(coord, cdist));
|
|
float dist = sqrt(dot(coord, coord));
|
|
return clamp((cdist.x - dist)*GEOM_CORNER_SMOOTH, 0.0, 1.0);
|
|
}
|
|
|
|
vec2 Warp_06(vec2 uv) {
|
|
//Pre-calc version for curvature = 0.6,0.6
|
|
uv = uv * 2.0 - 1.0;
|
|
float curvedCoordsDistance = length(uv);
|
|
uv /= curvedCoordsDistance;
|
|
uv *= 1.0-pow(vec2(1.0-(curvedCoordsDistance/1.4142)), vec2(0.8928) );
|
|
uv /= 0.6659;
|
|
uv = uv* 0.5 + 0.5;
|
|
return uv;
|
|
}
|
|
|
|
|
|
//warp full new
|
|
vec2 Warp(vec2 uv,float wx, float wy){
|
|
// Transform coordinates to range [-1, 1]
|
|
uv = uv * 2.0 - 1.0;
|
|
vec2 pow_exp = 1.0/(1.0+vec2(wx, wy) * 0.2 ) ;
|
|
//float curvedCoordsDistance = length(uv);
|
|
float curvedCoordsDistance = sqrt(uv.x*uv.x+uv.y*uv.y);
|
|
curvedCoordsDistance = clamp(curvedCoordsDistance, 0.0, 1.4142);
|
|
vec2 pow_base = vec2(1.0-(curvedCoordsDistance/1.4142135623730950488016887242097));
|
|
pow_base = abs(pow_base); // <-- this way intel and nvidia (probably amd) acts the same.
|
|
uv /= curvedCoordsDistance;
|
|
uv *= (1.0-pow(pow_base, pow_exp ));
|
|
uv /= (1.0-pow(vec2(0.29289321881345247559915563789515), pow_exp ));
|
|
// Transform coordinates back to [0, 1]
|
|
return uv* 0.5 + 0.5;
|
|
}
|
|
|
|
|
|
vec2 Warp_noclamp(vec2 uv,float wx, float wy){
|
|
// Transform coordinates to range [-1, 1]
|
|
uv = uv * 2.0 - 1.0;
|
|
vec2 pow_exp = 1.0/(1.0+vec2(wx, wy) * 0.2 ) ;
|
|
//float curvedCoordsDistance = length(uv);
|
|
float curvedCoordsDistance = sqrt(uv.x*uv.x+uv.y*uv.y);
|
|
//curvedCoordsDistance = clamp(curvedCoordsDistance, 0.0, 1.4142);
|
|
vec2 pow_base = vec2(1.0-(curvedCoordsDistance/1.4142135623730950488016887242097));
|
|
pow_base = abs(pow_base); // <-- this way intel and nvidia (probably amd) acts the same.
|
|
uv /= curvedCoordsDistance;
|
|
uv *= (1.0-pow(pow_base, pow_exp ));
|
|
uv /= (1.0-pow(vec2(0.29289321881345247559915563789515), pow_exp ));
|
|
// Transform coordinates back to [0, 1]
|
|
return uv* 0.5 + 0.5;
|
|
}
|
|
|
|
|
|
vec2 Warp_koko(vec2 co, vec2 w, float protrusion) {
|
|
//Keep protrusion higher than ~0.5
|
|
float czoom = 1 - distance(co, vec2(0.5));
|
|
czoom = mix(czoom, czoom * protrusion, czoom);
|
|
vec2 czoom2d = mix(vec2(1.0), vec2(czoom), w);
|
|
vec2 coff = mix( vec2(0.0), vec2(0.625), w);
|
|
return zoomxy(co, coff + czoom2d );
|
|
}
|
|
|
|
|
|
vec2 Warp_fast(vec2 uv, vec2 v_exp, vec2 arg2, float cut_ears) {
|
|
/*This version is exact and faster than the other implementation,
|
|
* Just because it needs precalculed arguments that can live in
|
|
* vertex shader
|
|
*/
|
|
// Transform coordinates to range [-1, 1]
|
|
uv = uv * 2.0 - 1.0;
|
|
//float curvedCoordsDistance = length(uv);
|
|
|
|
float curvedCoordsDistance = sqrt(uv.x*uv.x+uv.y*uv.y);
|
|
curvedCoordsDistance = min(curvedCoordsDistance, cut_ears);
|
|
vec2 pow_base = vec2(1.0-(curvedCoordsDistance/1.4142));
|
|
pow_base = abs(pow_base); // <-- this way intel and nvidia (probably amd) acts the same.
|
|
uv /= curvedCoordsDistance;
|
|
uv *= 1.0-pow(pow_base, v_exp );
|
|
uv /= arg2;
|
|
// Transform coordinates back to [0, 1]
|
|
return uv * 0.5 + 0.5;
|
|
}
|
|
|
|
|
|
//VIGNETTE - SPOT
|
|
/* float gauss(float x, float x0, float sx, float size, float power){
|
|
float arg = x-x0;
|
|
arg = -(1/size)/2.*arg*arg/sx;
|
|
float a = 1./(pow(2.*3.1415*sx, 0.5));
|
|
return a*exp(arg) * power;
|
|
}
|
|
|
|
float gauss_xy(float pos_x, float pos_y, float size, float power, float gmin, float gmax) {
|
|
vec2 uv = vTexCoord.xy + vec2(pos_x,pos_y);
|
|
float scale_uv = params.SourceSize.x / params.SourceSize.y;
|
|
float gx = gauss(uv.x* scale_uv, 0.5*scale_uv, 0.1, size, power);
|
|
float gy = gauss(uv.y, 0.5, 0.1, size, power);
|
|
float light = gx*gy;
|
|
return clamp(light,gmin,gmax);
|
|
}
|
|
*/
|
|
|
|
//AMBILIGHT RELATED
|
|
bool border_needed() {
|
|
//returns if we need to draw on the border
|
|
#ifdef STATIC_SUPPORT_BACKDROP
|
|
return true;
|
|
#else
|
|
return (DO_AMBILIGHT + DO_BG_IMAGE + DO_BACKDROP > 0.0);
|
|
#endif
|
|
}
|
|
|
|
|
|
#define mark_useless(x) mark_outer_frame(x)
|
|
vec4 mark_outer_frame(vec3 pixel) {
|
|
return vec4(pixel.rgb,0.0) ;
|
|
//For my mental sanity, I use a specific alpha channel value to mark a frame as a border
|
|
return vec4(pixel.r,pixel.g,pixel.b,alpha_mark) ;
|
|
}
|
|
#define is_useless(x) is_outer_frame(x)
|
|
bool is_outer_frame(vec4 pixel) {
|
|
return pixel.a <= 0.004; // about 1/256
|
|
/*Check if a pixel is marked as border by comparing the value of its alpha channel
|
|
Tolerance is needed, because precision can be as low as 1/256; since I don't need
|
|
alpha channel, use an even large tolerance.
|
|
*/
|
|
return abs(pixel.a - alpha_mark) < 0.05; //<-- 0.05 allow about 20 alpha levels (1*0.05)
|
|
}
|
|
|
|
#define ar_tolerance 0.1 //To compensate when comparing different A/R
|
|
bool is_rotated() {
|
|
/*
|
|
For some reason, probably retroarch rotates the view only on final viewport stage, transparent to the shader passes,
|
|
The OutputSize of a pass that scales to viewport will have different aspect from the real final viewport.
|
|
We exploit this to understand when a game is rotated.
|
|
-->> This function only works if the calling pass scales to viewport.
|
|
This will fail for very particular cases, eg: when output window is extremely tall
|
|
*/
|
|
return (abs((params.OutputSize.x/params.OutputSize.y) - (global.FinalViewportSize.x/global.FinalViewportSize.y)) > ar_tolerance);
|
|
}
|
|
|
|
float get_in_aspect() {
|
|
if (ASPECT_X == 0) return 1.3333333333333; //all mame games, not rotated
|
|
if (ASPECT_X == -1) return 1.5; // ntsc
|
|
if (ASPECT_X == -2) return 1.25; // pal
|
|
if (ASPECT_X == -3) return 1.143; // 8/7 snes
|
|
if (ASPECT_X == -4) return 1.428; // 10/7 megadrive
|
|
if (ASPECT_X == -5) return params.OriginalSize.x/params.OriginalSize.y; //uncorrected
|
|
if (ASPECT_X == -6) return 0.75; // 3/4, pre-rotated (TATE) 1.33 games.
|
|
return ASPECT_X / ASPECT_Y ;
|
|
}
|
|
|
|
vec2 get_scaled_coords_aspect(vec2 pTexCoord, vec4 destsize, float in_aspect , bool is_rotated){
|
|
if (!border_needed()) return pTexCoord;
|
|
//else
|
|
float scale_x = 1.0;
|
|
float scale_y = 1.0;
|
|
float offset_x = 0.0 ;
|
|
float offset_y = 0.0 ;
|
|
if (is_rotated) {
|
|
scale_y = destsize.x/(destsize.y / in_aspect );
|
|
offset_y = (0.5 * scale_y ) - 0.5 ;
|
|
} else {
|
|
//to fit width, use this:
|
|
scale_x = destsize.x/(destsize.y * in_aspect);
|
|
offset_x = (0.5 * scale_x ) - 0.5 ;
|
|
|
|
//to fit height, use this:
|
|
//scale_y = destsize.y/(destsize.x / in_aspect);
|
|
//offset_y = (0.5 * scale_y ) - 0.5 ;
|
|
}
|
|
|
|
vec2 scale_coord=vec2(pTexCoord.x*scale_x - offset_x , pTexCoord.y*scale_y - offset_y);
|
|
return scale_coord;
|
|
}
|
|
|
|
vec2 get_scaled_coords(vec2 pTexCoord, vec4 destsize, bool is_rotated){
|
|
if (!border_needed()) return pTexCoord;
|
|
//else
|
|
float scale_x = 1.0;
|
|
float scale_y = 1.0;
|
|
float offset_x = 0.0 ;
|
|
float offset_y = 0.0 ;
|
|
float in_aspect = get_in_aspect();
|
|
if (is_rotated) {
|
|
scale_y = destsize.x/(destsize.y / in_aspect );
|
|
offset_y = (0.5 * scale_y ) - 0.5 ;
|
|
} else {
|
|
scale_x = destsize.x/(destsize.y * in_aspect);
|
|
offset_x = (0.5 * scale_x ) - 0.5 ;
|
|
}
|
|
|
|
vec2 scale_coord=vec2(pTexCoord.x*scale_x - offset_x , pTexCoord.y*scale_y - offset_y);
|
|
return scale_coord;
|
|
}
|
|
|
|
vec2 integer_scale(vec2 in_coords, float target_aspect, bool is_rotated, float uncorrected_aspect) {
|
|
|
|
float raw_in_aspect = params.OriginalSize.x/params.OriginalSize.y;
|
|
float adapted_aspect = target_aspect / raw_in_aspect;
|
|
|
|
//Keep aspect?
|
|
adapted_aspect = mix_step(adapted_aspect, 1.0, uncorrected_aspect);
|
|
in_coords.x = zoom1D(in_coords.x, adapted_aspect);
|
|
|
|
vec2 izoom;
|
|
if (!is_rotated) {
|
|
//This is 1X integer zoom:
|
|
izoom = params.OriginalSize.xy / global.FinalViewportSize.xy;
|
|
//Find the maximum zoom allowed
|
|
float int_zoom = floor(global.FinalViewportSize.y / params.OriginalSize.y );
|
|
int_zoom = clamp(int_zoom, 1.0, GAME_GEOM_INT_SCALE_MAX);
|
|
izoom *= int_zoom;
|
|
} else {
|
|
izoom = params.OriginalSize.xy / global.FinalViewportSize.yx;
|
|
float int_zoom = floor(global.FinalViewportSize.y / (params.OriginalSize.x * adapted_aspect) );
|
|
int_zoom = clamp(int_zoom, 1.0, GAME_GEOM_INT_SCALE_MAX);
|
|
izoom *= int_zoom;
|
|
}
|
|
return zoomxy(in_coords, izoom);
|
|
}
|
|
|
|
bool need_NO_integer_scale() {
|
|
//returns if no integer scaling is requested.
|
|
return DO_GAME_GEOM_OVERRIDE * GAME_GEOM_INT_SCALE == 0.0;
|
|
}
|
|
|
|
bool need_integer_scale() {
|
|
//return if integer scaling is requested.
|
|
//return DO_GAME_GEOM_OVERRIDE == 1.0 && GAME_GEOM_INT_SCALE > 0.01;
|
|
return DO_GAME_GEOM_OVERRIDE * GAME_GEOM_INT_SCALE != 0.0;
|
|
}
|
|
|
|
|
|
float get_BEZEL_INNER_ZOOM() {
|
|
//Disables bezel inner zoom when using integer scaling
|
|
return BEZEL_INNER_ZOOM * float( !need_integer_scale() );
|
|
}
|
|
|
|
vec2 content_geom_override(vec2 co, float aspect, float in_aspect, float vshift, float hshift, float out_zoom){
|
|
//Aspect
|
|
//float bUse_original_aspect = float(aspect < 0.01);
|
|
float bUse_custom_aspect = step(0.01, aspect);
|
|
|
|
float scale_y;
|
|
/*if (aspect > 0.01)
|
|
scale_y = aspect/in_aspect;
|
|
else
|
|
scale_y = 1.0;
|
|
*/
|
|
//Unbranched previous:
|
|
scale_y = mix_step(1.0, aspect/in_aspect, bUse_custom_aspect );
|
|
|
|
float offset_y = (0.5 * scale_y ) - 0.5 ;
|
|
co.y = co.y*scale_y - offset_y;
|
|
//shift
|
|
co.y -= vshift/10.0;
|
|
co.x -= hshift/10.0;
|
|
//zoom
|
|
return zoom(co, out_zoom);
|
|
}
|
|
|
|
//Blur/Glow
|
|
#define PI 3.14159265359
|
|
float sinc_lanczos(float x) {
|
|
if (abs(x) < 0.001)
|
|
return 1.0;
|
|
|
|
x *= pi;
|
|
return sin(x) / x;
|
|
}
|
|
|
|
//Lanczos kinda broken, problematic.
|
|
vec3 lanczos(sampler2D sampler_in, vec2 co, vec4 texsize, float sharpness ) {
|
|
|
|
float data_pix_no = co.x * texsize.x;
|
|
float data_one = texsize.z;
|
|
|
|
float texel = floor(data_pix_no);
|
|
float phase = data_pix_no - texel;
|
|
float base_phase = phase - 0.5;
|
|
vec2 tex = vec2((texel + 0.5) * texsize.z, co.y);
|
|
|
|
vec3 col = vec3(0.0);
|
|
for (int i = -2; i <= 2; i++) {
|
|
float phase = base_phase - float(i);
|
|
phase*= sharpness;
|
|
if (abs(phase) < 2.0) { //FIXME check needed?
|
|
float g = sinc_lanczos(phase);
|
|
col += texture(sampler_in, tex + vec2(float(i) * data_one, 0.0)).rgb * g;
|
|
}
|
|
}
|
|
|
|
return col * sharpness;
|
|
}
|
|
|
|
|
|
vec3 blur9_x_box(sampler2D image, vec2 uv, vec2 sourcesize, float sharpness_x, float sharp_sub) {
|
|
sharp_sub = -2*sharp_sub+1;
|
|
float resolution = sourcesize.x * sharpness_x;
|
|
vec3 color = vec3(0.0);
|
|
|
|
vec2 off1 = vec2(1.0 / resolution, 0.0) ;
|
|
vec2 off2 = vec2(2.0 / resolution, 0.0) ;
|
|
|
|
color += texture(image, uv).rgb ;
|
|
color += texture(image, uv + off1).rgb ;
|
|
color += texture(image, uv - off1).rgb ;
|
|
color += texture(image, uv + off2).rgb * sharp_sub;
|
|
color += texture(image, uv - off2).rgb * sharp_sub;
|
|
color = color/(3.0 + sharp_sub*2);
|
|
return max(vec3(0.0), color);
|
|
}
|
|
|
|
vec3 blur9_y_box(sampler2D image, vec2 uv, vec2 sourcesize, float sharpness_y, float sharp_sub) {
|
|
sharp_sub = -2*sharp_sub+1;
|
|
float resolution = sourcesize.y * sharpness_y;
|
|
vec3 color = vec3(0.0);
|
|
vec2 off1 = vec2(0.0, 1.0 / resolution) ;
|
|
vec2 off2 = vec2(0.0, 2.0 / resolution) ;
|
|
color += texture(image, uv).rgb ;
|
|
color += texture(image, uv + off1).rgb ;
|
|
color += texture(image, uv - off1).rgb ;
|
|
color += texture(image, uv + off2).rgb * sharp_sub;
|
|
color += texture(image, uv - off2).rgb * sharp_sub;
|
|
color = color/(3.0 + sharp_sub*2);
|
|
return max(vec3(0.0), color);
|
|
}
|
|
|
|
vec3 glow_dumb(sampler2D in_texture, float glow_power, float gamma, vec2 coords) {
|
|
return pow( texture(in_texture, coords).rgb, vec3(gamma) ) * glow_power;
|
|
}
|
|
|
|
vec3 blur9_x(sampler2D image, vec2 uv, vec2 sourcesize, float sharpness_x) {
|
|
float resolution = sourcesize.x * sharpness_x;
|
|
vec3 color = vec3(0.0);
|
|
vec2 off1 = vec2(1.3846153846 / resolution, 0.0);
|
|
vec2 off2 = vec2(3.2307692308 / resolution, 0.0);
|
|
color += texture(image, uv).rgb * 0.2270270270;
|
|
color += texture(image, uv + off1).rgb * 0.3162162162;
|
|
color += texture(image, uv - off1).rgb * 0.3162162162;
|
|
color += texture(image, uv + off2).rgb * 0.0702702703;
|
|
color += texture(image, uv - off2).rgb * 0.0702702703;
|
|
return color;
|
|
}
|
|
|
|
|
|
|
|
vec3 blur9_x_gamma(sampler2D image, vec2 uv, vec2 sourcesize, float sharpness_x, vec3 gamma) {
|
|
float resolution = sourcesize.x * sharpness_x;
|
|
vec3 color = vec3(0.0);
|
|
vec2 off1 = vec2(1.3846153846 / resolution, 0.0);
|
|
vec2 off2 = vec2(3.2307692308 / resolution, 0.0);
|
|
vec3 lookup = texture(image, uv).rgb;
|
|
color += pow(lookup, gamma) * 0.2270270270;
|
|
lookup = texture(image, uv + off1).rgb;
|
|
color += pow(lookup, gamma) * 0.3162162162;
|
|
lookup = texture(image, uv - off1).rgb;
|
|
color += pow(lookup, gamma) * 0.3162162162;
|
|
lookup = texture(image, uv + off2).rgb;
|
|
color += pow(lookup, gamma) * 0.0702702703;
|
|
lookup = texture(image, uv - off2).rgb;
|
|
color += pow(lookup, gamma) * 0.0702702703;
|
|
return color;
|
|
}
|
|
|
|
vec3 blur9_y_gamma(sampler2D image, vec2 uv, vec2 sourcesize, float sharpness_x, vec3 gamma) {
|
|
float resolution = sourcesize.x * sharpness_x;
|
|
vec3 color = vec3(0.0);
|
|
vec2 off1 = vec2(0.0, 1.3846153846 / resolution) ;
|
|
vec2 off2 = vec2(0.0, 3.2307692308 / resolution) ;
|
|
vec3 lookup = texture(image, uv).rgb;
|
|
color += pow(lookup, gamma) * 0.2270270270;
|
|
lookup = texture(image, uv + off1).rgb;
|
|
color += pow(lookup, gamma) * 0.3162162162;
|
|
lookup = texture(image, uv - off1).rgb;
|
|
color += pow(lookup, gamma) * 0.3162162162;
|
|
lookup = texture(image, uv + off2).rgb;
|
|
color += pow(lookup, gamma) * 0.0702702703;
|
|
lookup = texture(image, uv - off2).rgb;
|
|
color += pow(lookup, gamma) * 0.0702702703;
|
|
return color;
|
|
}
|
|
|
|
vec3 blur9_y(sampler2D image, vec2 uv, vec2 sourcesize, float sharpness_y) {
|
|
float resolution = sourcesize.y * sharpness_y;
|
|
vec3 color = vec3(0.0);
|
|
vec2 off1 = vec2(0.0, 1.3846153846 / resolution) ;
|
|
vec2 off2 = vec2(0.0, 3.2307692308 / resolution) ;
|
|
color += texture(image, uv).rgb * 0.2270270270;
|
|
color += texture(image, uv + off1).rgb * 0.3162162162;
|
|
color += texture(image, uv - off1).rgb * 0.3162162162;
|
|
color += texture(image, uv + off2).rgb * 0.0702702703;
|
|
color += texture(image, uv - off2).rgb * 0.0702702703;
|
|
return color;
|
|
}
|
|
|
|
/*float is_scanline(vec2 uv){
|
|
return float(int(mod(uv.y * params.OutputSize.y , 2.0 )) !=0.0) ;
|
|
}
|
|
|
|
vec3 blur9_y_e_scanline(sampler2D image, vec2 uv, vec2 sourcesize, float sharpness_y) {
|
|
|
|
float mymod = int(mod(uv.y * params.OutputSize.y , 2.0 )) ;
|
|
float scanline = float( (mymod != 0.0) ) ;
|
|
|
|
vec2 resolution = sourcesize * sharpness_y;
|
|
vec3 color = vec3(0.0);
|
|
vec2 off1 = vec2(0.0, 1.3846153846) ;
|
|
vec2 off2 = vec2(0.0, 3.2307692308) ;
|
|
scanline = is_scanline(uv);
|
|
color += texture(image, uv).rgb * scanline * 0.2270270270;
|
|
scanline = is_scanline(uv + (off1 / resolution));
|
|
color += texture(image, uv + (off1 / resolution)).rgb * scanline * 0.3162162162;
|
|
scanline = is_scanline(uv - (off1 / resolution) );
|
|
color += texture(image, uv - (off1 / resolution)).rgb * scanline * 0.3162162162;
|
|
scanline = is_scanline(uv + (off2 / resolution) );
|
|
color += texture(image, uv + (off2 / resolution)).rgb * scanline * 0.0702702703;
|
|
scanline = is_scanline(uv - (off2 / resolution) );
|
|
color += texture(image, uv - (off2 / resolution)).rgb * scanline * 0.0702702703;
|
|
return color;
|
|
}
|
|
|
|
|
|
vec3 blur9_y_alpha_aware(sampler2D image, vec2 uv, vec2 sourcesize, float sharpness_y) {
|
|
vec2 resolution = sourcesize * sharpness_y;
|
|
vec2 off1 = vec2(0.0, 1.3846153846) ;
|
|
vec2 off2 = vec2(0.0, 3.2307692308) ;
|
|
vec3 color = vec3(0.0);
|
|
vec4 lookup = texture(image, uv); color += lookup.a * lookup.rgb * 0.2270270270;
|
|
lookup = texture(image, uv + (off1 / resolution)); color += lookup.a * lookup.rgb * 0.3162162162;
|
|
lookup = texture(image, uv - (off1 / resolution)); color += lookup.a * lookup.rgb * 0.3162162162;
|
|
lookup = texture(image, uv + (off2 / resolution)); color += lookup.a * lookup.rgb * 0.0702702703;
|
|
lookup = texture(image, uv - (off2 / resolution)); color += lookup.a * lookup.rgb * 0.0702702703;
|
|
return color;
|
|
}
|
|
*/
|
|
|
|
vec3 blur5_x(sampler2D image, vec2 uv, vec2 sourcesize, float sharpness_x, float lod) {
|
|
float resolution = sourcesize.x * sharpness_x;
|
|
vec3 color = vec3(0.0);
|
|
vec2 off1 = vec2(1.333333333333 / resolution, 0.0);
|
|
color += textureLod(image, uv, lod).rgb * 0.29411764705882354;
|
|
color += textureLod(image, uv + off1, lod).rgb * 0.35294117647058826;
|
|
color += textureLod(image, uv - off1, lod).rgb * 0.35294117647058826;
|
|
return color;
|
|
}
|
|
|
|
vec3 blur5_y(sampler2D image, vec2 uv, vec2 sourcesize, float sharpness_y, float lod) {
|
|
float resolution = sourcesize.y * sharpness_y;
|
|
vec3 color = vec3(0.0);
|
|
vec2 off1 = vec2(0.0, 1.333333333333 / resolution) ;
|
|
color += textureLod(image, uv, lod).rgb * 0.29411764705882354;
|
|
color += textureLod(image, uv + off1, lod).rgb * 0.35294117647058826;
|
|
color += textureLod(image, uv - off1, lod).rgb * 0.35294117647058826;
|
|
return color;
|
|
}
|
|
|
|
#define RGB2GRAY_VEC3 vec3(0.299, 0.587, 0.114)
|
|
float rgb_to_gray(vec3 rgb) {
|
|
return dot(rgb, RGB2GRAY_VEC3);
|
|
}
|
|
|
|
//smoothly shade x and y < 0.0, currently unused
|
|
/*float blur_shade(vec2 co, float size) {
|
|
|
|
float co_1D;
|
|
(co.x < 0.0 || co.x > 1.0) ? co_1D = co.x : co_1D = co.y ;
|
|
|
|
float side_hi_switch = float(co_1D > 1.0);
|
|
float side_lo_switch = float(co_1D < 0.0);
|
|
|
|
float smooth_min = 1.0 * side_hi_switch;
|
|
float smooth_max = smooth_min + (
|
|
( size * side_hi_switch) +
|
|
(-size * side_lo_switch )
|
|
);
|
|
|
|
return smoothstep(smooth_min, smooth_max, co_1D);
|
|
}
|
|
*/
|
|
|
|
|
|
vec3 hsv2rgb(vec3 c){
|
|
vec4 K = vec4(1.0, 2.0 / 3.0, 1.0 / 3.0, 3.0);
|
|
vec3 p = abs(fract(c.xxx + K.xyz) * 6.0 - K.www);
|
|
return c.z * mix(K.xxx, clamp(p - K.xxx, 0.0, 1.0), c.y);
|
|
}
|
|
|
|
#define eps10 1.0e-10
|
|
vec3 rgb2hsv(vec3 c){
|
|
vec4 K = vec4(0.0, -1.0 / 3.0, 2.0 / 3.0, -1.0);
|
|
vec4 p = mix(vec4(c.bg, K.wz), vec4(c.gb, K.xy), step(c.b, c.g));
|
|
vec4 q = mix(vec4(p.xyw, c.r), vec4(c.r, p.yzx), step(p.x, c.r));
|
|
|
|
float d = q.x - min(q.w, q.y);
|
|
return vec3(abs(q.z + (q.w - q.y) / (6.0 * d + eps10)), d / (q.x + eps10), q.x);
|
|
}
|
|
|
|
float get_dyn_zoom(sampler2D tex) {
|
|
return 1.0 + (texture(tex, vec2(0.75,0.75) ).a/ DYNZOOM_FACTOR) ;
|
|
}
|
|
|
|
|
|
vec2 tilt(vec2 co, float is_rotated, vec2 tilt) {
|
|
|
|
vec2 r_tilt = vec2( mix_step(tilt.x, tilt.y, is_rotated),
|
|
mix_step(tilt.y, -tilt.x, is_rotated)
|
|
);
|
|
|
|
vec2 tilt_min = 1 - r_tilt;
|
|
vec2 tilt_max = 1 + r_tilt;
|
|
|
|
// X Tilt
|
|
float tilt_x_range = scale_to_range(co.y, tilt_min.x, tilt_max.x);
|
|
co = vec2( zoom1D(co.x, tilt_x_range),
|
|
zoom1D(co.y, tilt_x_range)
|
|
);
|
|
|
|
// Y Tilt
|
|
float tilt_y_range = scale_to_range(co.x, tilt_min.y, tilt_max.y);
|
|
co = vec2( zoom1D(co.x, tilt_y_range),
|
|
zoom1D(co.y, tilt_y_range)
|
|
);
|
|
|
|
// Aply FOV;
|
|
vec2 fov = mix(vec2(1.0), vec2(TILT_FOV), abs( tilt.xy ));
|
|
co = zoomxy(co, mix_step(fov.yx, fov.xy, is_rotated));
|
|
|
|
co.xy += mix_step(tilt.yx, -tilt.xy, is_rotated) * 0.4;
|
|
|
|
return co;
|
|
|
|
}
|
|
|
|
/*bool is_first_outside_rect(vec2 point, vec4 rect) {
|
|
return (point.x < rect.x || point.x > rect.z ||
|
|
point.y < rect.y || point.y > rect.w) ;
|
|
}
|
|
|
|
bool is_first_inside_rect(vec2 point, vec4 rect) {
|
|
return (point.x >= rect.x && point.x < rect.z &&
|
|
point.y >= rect.y && point.y < rect.w) ;
|
|
}
|
|
*/
|
|
bool is_first_inside_rect(vec2 point, vec4 rect) {
|
|
vec2 bounded = clamp(point, rect.xy, rect.zw);
|
|
return point == bounded;
|
|
}
|
|
bool is_first_outside_rect(vec2 point, vec4 rect) {
|
|
vec2 bounded = clamp(point, rect.xy, rect.zw);
|
|
return point != bounded;
|
|
}
|
|
|
|
|
|
// COLOR TOOLS
|
|
vec3 kelvin2rgb(float k) {
|
|
//Convert kelvin temperature to rgb factors
|
|
k = clamp(k,1000,40000);
|
|
k=k/100.0;
|
|
float tmpCalc;
|
|
vec3 pixel_out;
|
|
if (k<=66) {
|
|
pixel_out.r = 255;
|
|
pixel_out.g = 99.47080258612 * log(k) - 161.11956816610;
|
|
} else {
|
|
pixel_out.r = 329.6987274461 * pow(k - 60 ,-0.13320475922);
|
|
pixel_out.g = 288.12216952833 * pow(k-60, -0.07551484921);
|
|
}
|
|
|
|
if (k >= 66)
|
|
pixel_out.b = 255;
|
|
else if (k<=19)
|
|
pixel_out.b = 0;
|
|
else
|
|
pixel_out.b = 138.51773122311 * log(k - 10) - 305.04479273072;
|
|
|
|
return pixel_out/255.0;
|
|
}
|
|
|
|
#define W vec3(0.2125, 0.7154, 0.0721)
|
|
vec3 color_tools(vec3 pixel_out, vec3 Temperature_rgb) {
|
|
//Apply color corrections to input signal.
|
|
|
|
//Push luminance without clipping
|
|
pixel_out = pixel_push_luminance(pixel_out,LUMINANCE);
|
|
|
|
//Modify contrast and brightness
|
|
if (CONTRAST != 0.0 || BRIGHTNESS != 0.0)
|
|
pixel_out.rgb = apply_contrast_brightness(pixel_out.rgb, CONTRAST, BRIGHTNESS);
|
|
|
|
//Modify color temperature
|
|
if (TEMPERATURE != 6500.0) pixel_out.rgb = pixel_out.rgb * Temperature_rgb;
|
|
|
|
//Colorization for monochrome display on hsv colorspace.
|
|
//Select different hues for dark and bright pixels and mix them depending on the brightness
|
|
if (COLOR_MONO_COLORIZE > 0.01) {
|
|
vec3 pixel_grayscale = vec3(dot(pixel_out.rgb, W));
|
|
vec3 pixel_in_hsv = rgb2hsv(pixel_grayscale); //FIXME needed? yes, checked.
|
|
float lum = pixel_in_hsv.z * pixel_in_hsv.z; //<-- looks way better!
|
|
vec2 bias = mix_step( vec2(0.0, COLOR_MONO_HUE_BIAS), vec2(COLOR_MONO_HUE_BIAS, 0.0), float(COLOR_MONO_HUE_BIAS > 0.0));
|
|
bias = abs(bias);
|
|
|
|
lum=scale_to_range(lum, 0.0-bias.x, 1.0+bias.y);
|
|
pixel_in_hsv.y=1.0; //sat
|
|
|
|
//Mix hues in rgb colorspace:
|
|
vec3 pixel_rgb_hue1 = hsv2rgb( vec3(COLOR_MONO_HUE1, 1.0, pixel_in_hsv.z ) );
|
|
vec3 pixel_rgb_hue2 = hsv2rgb( vec3(COLOR_MONO_HUE2, 1.0, pixel_in_hsv.z ) );
|
|
vec3 pixel_rgb_hue12 = mix(pixel_rgb_hue2, pixel_rgb_hue1, vec3(lum));
|
|
//Mix original and colorized with a specified strength
|
|
pixel_out = mix(pixel_out, pixel_rgb_hue12, COLOR_MONO_COLORIZE);
|
|
|
|
|
|
//pixel_in_hsv.x = mix(COLOR_MONO_HUE2, COLOR_MONO_HUE1, lum); //hue
|
|
//pixel_out = mix(pixel_out, hsv2rgb(pixel_in_hsv), COLOR_MONO_COLORIZE);pk
|
|
}
|
|
|
|
//Modify saturation
|
|
if (!(SATURATION == 1.0)) {
|
|
vec3 intensity = vec3(dot(pixel_out.rgb, W));
|
|
pixel_out.rgb = mix(intensity, pixel_out.rgb, SATURATION);
|
|
}
|
|
|
|
return pixel_out;
|
|
}
|
|
|
|
vec4 PG_get_hmask_preset() {
|
|
/* Common masks:
|
|
* 1 gm : mask size = 2 | offsets=1,0,1 | width=0.3
|
|
* 2 gmx : mask size = 3 | offsets=1,0,1 | width=0.25
|
|
* 3 rgb : mask size = 3 | offsets=0,1,2 | width=0.25
|
|
* 4 rgbx : mask size = 4 | offsets=0,1,2 | width=0.20
|
|
* 3 rbg : mask size = 3 | offsets=0,1,2 | width=0.25
|
|
* 4 rbgx : mask size = 4 | offsets=0,1,2 | width=0.20
|
|
* 5 wx : mask size = 2 | offsets=0.3,0.3,0.3
|
|
*/
|
|
if (PIXELGRID_H_PRST == 0.0) // manual mask and size
|
|
return vec4( PIXELGRID_R_SHIFT, PIXELGRID_G_SHIFT, PIXELGRID_B_SHIFT, PIXELGRID_H_COUNT);
|
|
|
|
if (PIXELGRID_H_PRST == 1.0)
|
|
return vec4( vec3(1,0,1), 2); // gm, mask size 2
|
|
|
|
if (PIXELGRID_H_PRST == 2.0)
|
|
return vec4( vec3(1,0,1), 3); //gmx, mask size 3
|
|
|
|
if (PIXELGRID_H_PRST == 3.0)
|
|
return vec4( vec3(0,1,2), 3); //rgb, mask size 3
|
|
|
|
if (PIXELGRID_H_PRST == 4.0)
|
|
return vec4( vec3(0,1,2), 4); //rgbx, mask size 4
|
|
|
|
if (PIXELGRID_H_PRST == 5.0)
|
|
return vec4( vec3(0,2,1), 3); //rbg, mask size 3
|
|
|
|
if (PIXELGRID_H_PRST == 6.0)
|
|
return vec4( vec3(0,2,1), 4); //rbgx, mask size 4
|
|
|
|
if (PIXELGRID_H_PRST == 7.0)
|
|
return vec4( vec3(0.3,0.3,0.3), 2); //WX, mask size 2
|
|
}
|