slang-shaders/crt/shaders/crt-royale/src/crt-royale-scanlines-horizontal-apply-mask.h
2017-12-28 20:34:39 -06:00

364 lines
16 KiB
C

///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
// crt-royale: A full-featured CRT shader, with cheese.
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
//
// This program is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 2 of the License, or any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
// more details.
//
// You should have received a copy of the GNU General Public License along with
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
// Place, Suite 330, Boston, MA 02111-1307 USA
layout(push_constant) uniform Push
{
vec4 SourceSize;
vec4 OriginalSize;
vec4 OutputSize;
uint FrameCount;
} params;
layout(std140, set = 0, binding = 0) uniform UBO
{
mat4 MVP;
float crt_gamma;
float lcd_gamma;
float levels_contrast;
float halation_weight;
float diffusion_weight;
float bloom_underestimate_levels;
float bloom_excess;
float beam_min_sigma;
float beam_max_sigma;
float beam_spot_power;
float beam_min_shape;
float beam_max_shape;
float beam_shape_power;
float beam_horiz_filter;
float beam_horiz_sigma;
float beam_horiz_linear_rgb_weight;
float convergence_offset_x_r;
float convergence_offset_x_g;
float convergence_offset_x_b;
float convergence_offset_y_r;
float convergence_offset_y_g;
float convergence_offset_y_b;
float mask_type;
float mask_sample_mode_desired;
float mask_num_triads_desired;
float mask_triad_size_desired;
float mask_specify_num_triads;
float aa_subpixel_r_offset_x_runtime;
float aa_subpixel_r_offset_y_runtime;
float aa_cubic_c;
float aa_gauss_sigma;
float geom_mode_runtime;
float geom_radius;
float geom_view_dist;
float geom_tilt_angle_x;
float geom_tilt_angle_y;
float geom_aspect_ratio_x;
float geom_aspect_ratio_y;
float geom_overscan_x;
float geom_overscan_y;
float border_size;
float border_darkness;
float border_compress;
float interlace_bff;
float interlace_1080i;
vec4 VERTICAL_SCANLINESSize;
vec4 BLOOM_APPROXSize;
vec4 HALATION_BLURSize;
vec4 MASK_RESIZESize;
} global;
#define VERTICAL_SCANLINEStexture VERTICAL_SCANLINES
#define VERTICAL_SCANLINEStexture_size global.VERTICAL_SCANLINESSize.xy
#define VERTICAL_SCANLINESvideo_size global.VERTICAL_SCANLINESSize.xy
#define BLOOM_APPROXtexture BLOOM_APPROX
#define BLOOM_APPROXtexture_size global.BLOOM_APPROXSize.xy
#define BLOOM_APPROXvideo_size global.BLOOM_APPROXSize.xy
#define HALATION_BLURtexture HALATION_BLUR
#define HALATION_BLURtexture_size global.HALATION_BLURSize.xy
#define HALATION_BLURvideo_size global.HALATION_BLURSize.xy
#ifdef INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
#define MASK_RESIZEtexture Source
#else
#define MASK_RESIZEtexture MASK_RESIZE
#endif
#define MASK_RESIZEtexture_size global.MASK_RESIZESize.xy
#define MASK_RESIZEvideo_size global.MASK_RESIZESize.xy
float bloom_approx_scale_x = params.OutputSize.x / params.SourceSize.y;
const float max_viewport_size_x = 1080.0*1024.0*(4.0/3.0);
///////////////////////////// SETTINGS MANAGEMENT ////////////////////////////
#include "../../../../include/compat_macros.inc"
#include "../user-settings.h"
#include "derived-settings-and-constants.h"
#include "bind-shader-params.h"
/////////////////////////////// VERTEX INCLUDES ///////////////////////////////
#include "scanline-functions.h"
#include "phosphor-mask-resizing.h"
#include "../../../../include/gamma-management.h"
/////////////////////////////////// HELPERS //////////////////////////////////
inline float4 tex2Dtiled_mask_linearize(const sampler2D tex,
const float2 tex_uv)
{
// If we're manually tiling a texture, anisotropic filtering can get
// confused. One workaround is to just select the lowest mip level:
#ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
// TODO: Use tex2Dlod_linearize with a calculated mip level.
return tex2Dlod_linearize(tex, float4(tex_uv, 0.0, 0.0));
#else
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
return tex2Dbias_linearize(tex, float4(tex_uv, 0.0, -16.0));
#else
return tex2D_linearize(tex, tex_uv);
#endif
#endif
#else
return tex2D_linearize(tex, tex_uv);
#endif
}
#pragma stage vertex
layout(location = 0) in vec4 Position;
layout(location = 1) in vec2 TexCoord;
layout(location = 0) out vec2 video_uv;
layout(location = 1) out vec2 scanline_tex_uv;
layout(location = 2) out vec2 blur3x3_tex_uv;
layout(location = 3) out vec2 halation_tex_uv;
layout(location = 4) out vec2 scanline_texture_size_inv;
layout(location = 5) out vec4 mask_tile_start_uv_and_size;
layout(location = 6) out vec2 mask_tiles_per_screen;
void main()
{
gl_Position = global.MVP * Position;
float2 tex_uv = TexCoord;
// Our various input textures use different coords.
video_uv = tex_uv * IN.texture_size/IN.video_size;
scanline_texture_size_inv =
float2(1.0, 1.0)/VERTICAL_SCANLINEStexture_size;
//video_uv = video_uv;
scanline_tex_uv = video_uv * VERTICAL_SCANLINESvideo_size *
scanline_texture_size_inv;
blur3x3_tex_uv = video_uv * BLOOM_APPROXvideo_size /
BLOOM_APPROXtexture_size;
halation_tex_uv = video_uv * HALATION_BLURvideo_size /
HALATION_BLURtexture_size;
//scanline_texture_size_inv = scanline_texture_size_inv;
// Get a consistent name for the final mask texture size. Sample mode 0
// uses the manually resized mask, but ignore it if we never resized.
#ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
const float mask_sample_mode = get_mask_sample_mode();
const float2 mask_resize_texture_size = mask_sample_mode < 0.5 ?
MASK_RESIZEtexture_size : mask_texture_large_size;
const float2 mask_resize_video_size = mask_sample_mode < 0.5 ?
MASK_RESIZEvideo_size : mask_texture_large_size;
#else
const float2 mask_resize_texture_size = mask_texture_large_size;
const float2 mask_resize_video_size = mask_texture_large_size;
#endif
// Compute mask tile dimensions, starting points, etc.:
//float2 mask_tiles_per_screen;
mask_tile_start_uv_and_size = get_mask_sampling_parameters(
mask_resize_texture_size, mask_resize_video_size, IN.output_size,
mask_tiles_per_screen);
//mask_tiles_per_screen = mask_tiles_per_screen;
}
#pragma stage fragment
layout(location = 0) in vec2 video_uv;
layout(location = 1) in vec2 scanline_tex_uv;
layout(location = 2) in vec2 blur3x3_tex_uv;
layout(location = 3) in vec2 halation_tex_uv;
layout(location = 4) in vec2 scanline_texture_size_inv;
layout(location = 5) in vec4 mask_tile_start_uv_and_size;
layout(location = 6) in vec2 mask_tiles_per_screen;
layout(location = 0) out vec4 FragColor;
layout(set = 0, binding = 2) uniform sampler2D Source;
layout(set = 0, binding = 3) uniform sampler2D mask_grille_texture_large;
layout(set = 0, binding = 4) uniform sampler2D mask_slot_texture_large;
layout(set = 0, binding = 5) uniform sampler2D mask_shadow_texture_large;
layout(set = 0, binding = 6) uniform sampler2D VERTICAL_SCANLINES;
layout(set = 0, binding = 7) uniform sampler2D BLOOM_APPROX;
layout(set = 0, binding = 8) uniform sampler2D HALATION_BLUR;
#ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
layout(set = 0, binding = 9) uniform sampler2D MASK_RESIZE;
#endif
////////////////////////////// FRAGMENT INCLUDES //////////////////////////////
#include "bloom-functions.h"
void main()
{
// This pass: Sample (misconverged?) scanlines to the final horizontal
// resolution, apply halation (bouncing electrons), and apply the phosphor
// mask. Fake a bloom if requested. Unless we fake a bloom, the output
// will be dim from the scanline auto-dim, mask dimming, and low gamma.
// Horizontally sample the current row (a vertically interpolated scanline)
// and account for horizontal convergence offsets, given in units of texels.
const float3 scanline_color_dim = sample_rgb_scanline_horizontal(
VERTICAL_SCANLINEStexture, scanline_tex_uv,
VERTICAL_SCANLINEStexture_size, scanline_texture_size_inv);
const float auto_dim_factor = levels_autodim_temp;
// Sample the phosphor mask:
const float2 tile_uv_wrap = video_uv * mask_tiles_per_screen;
const float2 mask_tex_uv = convert_phosphor_tile_uv_wrap_to_tex_uv(
tile_uv_wrap, mask_tile_start_uv_and_size);
float3 phosphor_mask_sample;
#ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
const bool sample_orig_luts = get_mask_sample_mode() > 0.5;
#else
static const bool sample_orig_luts = true;
#endif
if(sample_orig_luts)
{
// If mask_type is static, this branch will be resolved statically.
if(mask_type < 0.5)
{
phosphor_mask_sample = tex2D_linearize(
mask_grille_texture_large, mask_tex_uv).rgb;
}
else if(mask_type < 1.5)
{
phosphor_mask_sample = tex2D_linearize(
mask_slot_texture_large, mask_tex_uv).rgb;
}
else
{
phosphor_mask_sample = tex2D_linearize(
mask_shadow_texture_large, mask_tex_uv).rgb;
}
}
else
{
// Sample the resized mask, and avoid tiling artifacts:
phosphor_mask_sample = tex2Dtiled_mask_linearize(
MASK_RESIZEtexture, mask_tex_uv).rgb;
}
// Sample the halation texture (auto-dim to match the scanlines), and
// account for both horizontal and vertical convergence offsets, given
// in units of texels horizontally and same-field scanlines vertically:
const float3 halation_color = tex2D_linearize(
HALATION_BLURtexture, halation_tex_uv).rgb;
// Apply halation: Halation models electrons flying around under the glass
// and hitting the wrong phosphors (of any color). It desaturates, so
// average the halation electrons to a scalar. Reduce the local scanline
// intensity accordingly to conserve energy.
const float3 halation_intensity_dim =
float3(dot(halation_color, float3(auto_dim_factor/3.0)));
const float3 electron_intensity_dim = lerp(scanline_color_dim,
halation_intensity_dim, global.halation_weight);
// Apply the phosphor mask:
const float3 phosphor_emission_dim = electron_intensity_dim *
phosphor_mask_sample;
#ifdef PHOSPHOR_BLOOM_FAKE
// The BLOOM_APPROX pass approximates a blurred version of a masked
// and scanlined image. It's usually used to compute the brightpass,
// but we can also use it to fake the bloom stage entirely. Caveats:
// 1.) A fake bloom is conceptually different, since we're mixing in a
// fully blurred low-res image, and the biggest implication are:
// 2.) If mask_amplify is incorrect, results deteriorate more quickly.
// 3.) The inaccurate blurring hurts quality in high-contrast areas.
// 4.) The bloom_underestimate_levels parameter seems less sensitive.
// Reverse the auto-dimming and amplify to compensate for mask dimming:
#define PHOSPHOR_BLOOM_FAKE_WITH_SIMPLE_BLEND
#ifdef PHOSPHOR_BLOOM_FAKE_WITH_SIMPLE_BLEND
static const float blur_contrast = 1.05;
#else
static const float blur_contrast = 1.0;
#endif
const float mask_amplify = get_mask_amplify();
const float undim_factor = 1.0/auto_dim_factor;
const float3 phosphor_emission =
phosphor_emission_dim * undim_factor * mask_amplify;
// Get a phosphor blur estimate, accounting for convergence offsets:
const float3 electron_intensity = electron_intensity_dim * undim_factor;
const float3 phosphor_blur_approx_soft = tex2D_linearize(
BLOOM_APPROXtexture, blur3x3_tex_uv).rgb;
const float3 phosphor_blur_approx = lerp(phosphor_blur_approx_soft,
electron_intensity, 0.1) * blur_contrast;
// We could blend between phosphor_emission and phosphor_blur_approx,
// solving for the minimum blend_ratio that avoids clipping past 1.0:
// 1.0 >= total_intensity
// 1.0 >= phosphor_emission * (1.0 - blend_ratio) +
// phosphor_blur_approx * blend_ratio
// blend_ratio = (phosphor_emission - 1.0)/
// (phosphor_emission - phosphor_blur_approx);
// However, this blurs far more than necessary, because it aims for
// full brightness, not minimal blurring. To fix it, base blend_ratio
// on a max area intensity only so it varies more smoothly:
const float3 phosphor_blur_underestimate =
phosphor_blur_approx * bloom_underestimate_levels;
const float3 area_max_underestimate =
phosphor_blur_underestimate * mask_amplify;
#ifdef PHOSPHOR_BLOOM_FAKE_WITH_SIMPLE_BLEND
const float3 blend_ratio_temp =
(area_max_underestimate - float3(1.0, 1.0, 1.0)) /
(area_max_underestimate - phosphor_blur_underestimate);
#else
// Try doing it like an area-based brightpass. This is nearly
// identical, but it's worth toying with the code in case I ever
// find a way to make it look more like a real bloom. (I've had
// some promising textures from combining an area-based blend ratio
// for the phosphor blur and a more brightpass-like blend-ratio for
// the phosphor emission, but I haven't found a way to make the
// brightness correct across the whole color range, especially with
// different bloom_underestimate_levels values.)
const float desired_triad_size = lerp(global.mask_triad_size_desired,
IN.output_size.x/global.mask_num_triads_desired,
global.mask_specify_num_triads);
const float bloom_sigma = get_min_sigma_to_blur_triad(
desired_triad_size, bloom_diff_thresh);
const float center_weight = get_center_weight(bloom_sigma);
const float3 max_area_contribution_approx =
max(float3(0.0, 0.0, 0.0), phosphor_blur_approx -
center_weight * phosphor_emission);
const float3 area_contrib_underestimate =
bloom_underestimate_levels * max_area_contribution_approx;
const float3 blend_ratio_temp =
((float3(1.0, 1.0, 1.0) - area_contrib_underestimate) /
area_max_underestimate - float3(1.0, 1.0, 1.0)) / (center_weight - 1.0);
#endif
// Clamp blend_ratio in case it's out-of-range, but be SUPER careful:
// min/max/clamp are BIZARRELY broken with lerp (optimization bug?),
// and this redundant sequence avoids bugs, at least on nVidia cards:
const float3 blend_ratio_clamped = max(clamp(blend_ratio_temp, 0.0, 1.0), 0.0);
const float3 blend_ratio = lerp(blend_ratio_clamped, float3(1.0,1.0,1.0), global.bloom_excess);
// Blend the blurred and unblurred images:
const float3 phosphor_emission_unclipped =
lerp(phosphor_emission, phosphor_blur_approx, blend_ratio);
// Simulate refractive diffusion by reusing the halation sample.
const float3 pixel_color = lerp(phosphor_emission_unclipped,
halation_color, global.diffusion_weight);
#else
const float3 pixel_color = phosphor_emission_dim;
#endif
// Encode if necessary, and output.
FragColor = encode_output(float4(pixel_color, 1.0));
}