This introduces the following `for_each` functions:
* root_for_each_workspace
* root_for_each_container
* output_for_each_workspace
* output_for_each_container
* workspace_for_each_container
And introduces the following `find` functions:
* root_find_output
* root_find_workspace
* root_find_container
* output_find_workspace
* output_find_container
* workspace_find_container
* container_find_child
And removes the following functions:
* container_descendants
* container_for_each_descendant
* container_find
This change is preparing the way for demoting sway_container. Eventually
these functions will accept and return sway_outputs, sway_workspaces and
sway_containers (meaning a C_CONTAINER or C_VIEW).
This change also makes it easy to handle abnormalities like the
workspace floating list, root's scratchpad list and (once implemented)
root's saved workspaces list for when there's no connected outputs.
This commit renames container_sort_workspaces to output_sort_workspaces
and moves it to output.c.
This also renames container_wrap_children to workspace_wrap_children and
moves it to workspace.c. This function is only called with workspaces.
Fixes#2467.
This commit introduces seat_get_focus_inactive_floating to supplement
seat_get_focus_inactive_tiling, and uses it during `focus mode_toggle`
which fixes a focus bug.
This also refactors the seat_get_focus_inactive functions so that they
do their selection logic themselves rather than offloading it to
seat_get_focus_by_type which was getting bloated. seat_get_focus_by_type
is now removed.
Lastly, this commit changes seat_get_focus to just return the first
container in the focus stack rather than looping and calling
seat_get_focus_by_type.
* The OP_RESIZE seat operation has been renamed to OP_RESIZE_FLOATING,
and OP_RESIZE_TILING has been introduced.
* Similar to the above, seat_begin_resize and handle_resize_motion have
been renamed and tiling variants introduced.
* resize.c's resize_tiled has to be used, so container_resize_tiled has
been introduced in resize.c to allow external code to call it.
This allows for a color to be set when the wallpaper does not fill the
entire output. If specified, the fallback color is also used when the
image path is inaccessible.
Rationale: Sticky containers are always assigned to the visible
workspace.
The basic idea here is to check the destination's output (move.c:190).
But if the command was `move container to workspace x` then a workspace
might have been created for it. We could destroy the workspace in this
case, but that results in unnecessary IPC events.
To avoid this, the logic for `move container to workspace x` has been
adjusted. It now delays creating the workspace until the end, and uses
`workspace_get_initial_output` to determine and check the output before
creating it.
The back_and_forth condition is intended to be handled in the else-if
block, but this was never reached because it remained in the first
block's conditions.
container_move_to handled moving containers to new parents, as well as
moving workspaces to new outputs.
This commit removes the workspace-moving code from this function and
introduces workspace_move_to_output. Moving workspaces using
container_move_to only happened from the move command, so it's been
implemented as a static function in that file.
Simplifying container_move_to makes it easier for me to fix some issues
in #2420.
This creates a root.c and moves bits and pieces from elsewhere into it.
* layout_init has been renamed to root_create and moved into root.c
* root_destroy has been created and is called on shutdown
* scratchpad code has been moved into root.c, because hidden scratchpad
containers are stored in the root struct
wlroots uses wl_event_loop_add_signal to handle SIGUSR1 from Xwayland.
wl_event_loop_add_signal works by masking the signal and receiving it from a
signalfd. The signal mask is preserved across fork and exec, so subprocesses
spawned by Sway start with SIGUSR1 masked. Most subprocesses do not expect this
and never unmask the signal, resulting in missing functionality or unexpected
behavior for processes that use SIGUSR1 (such as i3status).
Fix this by unmasking all signals between fork and exec.
When a container is moved from, say, workspace 1 to workspace 2, workspace 2 is focused in order to arrange the windows before focus is moved back to workspace 1, which caused a workspace:focus event from workspace 2 to workspace 1 to be emitted. This commit inhibits that event.
Also fixes a crash when unfloating a window. It needs to add it back to
the tiling tree as a sibling rather than a child, because the reference
container might be a view.
This introduces seat_get_focus_inactive_tiling and updates
`focus mode_toggle` to use it instead, because the previous method
wasn't guaranteed to return a tiling view.
Things worth noting:
* When a fullscreen view unmaps, the check to unset fullscreen on the
workspace has been moved out of view_unmap and into container_destroy,
because containers can be fullscreen too
* The calls to `container_reap_empty_recursive(workspace)` have been
removed from `container_set_floating`. That function reaps upwards so it
wouldn't do anything. I'm probably the one who originally added it...
* My fix (b14bd1b0b1) for the tabbed child
crash has a side effect where when you close a floating container, focus
is not given to the tiled container again. I've removed my fix and
removed the call to `send_cursor_motion` from `seat_set_focus_warp`. We
should consider calling it from somewhere earlier in the call stack.
The mouse binding logic is inspired/copied from the
keyboard binding logic; we store a sorted list of the
currently pressed buttons, and trigger a binding when
the currently pressed (or just recently pressed, in
the case of a release binding) buttons, as well as
modifiers/container region, match those of a given
binding.
As the code to execute a binding is not very keyboard
specific, keyboard_execute_command is renamed to
seat_execute_command and moved to where the other
binding handling functions are. The call to
transaction_commit_dirty has been lifted out.
First, the existing sway_binding structure is given an
enumerated type code. As all flags to bindsym/bindcode
are boolean, a single uint32 is used to hold all flags.
The _BORDER, _CONTENTS, _TITLEBAR flags, when active,
indicate in which part of a container the binding can
trigger; to localize complexity, they do not overlap
with the command line arguments, which center around
_TITLEBAR being set by default.
The keyboard handling code is adjusted for this change,
as is binding_key_compare; note that BINDING_LOCKED
is *not* part of the key portion of the binding.
Next, list of mouse bindings is introduced and cleaned up.
Finally, the binding command parsing code is extended
to handle the case where bindsym is used to describe
a mouse binding rather than a keysym binding; the
difference between the two may be detected as late as
when the first key/button is parsed, or as early as
the first flag. As bindings can have multiple
keycodes/keysyms/buttons, mixed keysym/button sequences
are prohibited.
Implements the following commands:
* move scratchpad
* scratchpad show
* [criteria] scratchpad show
Also fixes these:
* Fix memory leak when executing command with criteria
(use `list_free(views)` instead of `free(views)`)
* Fix crash when running `move to` with no further arguments
This implements the following:
* `floating_modifier` configuration directive
* Drag a floating window by its title bar
* Hold mod + drag a floating window from anywhere
* Resize a floating view by dragging the border
* Resize a floating view by holding mod and right clicking anywhere on
the view
* Resize a floating view and keep aspect ratio by holding shift while
resizing using either method
* Mouse cursor turns into resize when hovering floating border or corner
The directive sets the timeout before an urgent view becomes normal
again after switching to it from another workspace.
Also:
* When an xwayland surface removes the urgent hint while the timer is
active, we now ignore the request. This happens as soon as the view
receives focus, so it was effectively making the timer pointless.
* The timeout is now only applied when switching to it from another
workspace.
Introduces a command to manually set urgency, as well as rendering of
urgent views, sending the IPC event, removing urgency after focused for
one second, and matching urgent views via criteria.
This PR changes the way we handle transactions to a more simple method.
The new method is to mark containers as dirty from low level code
(eg. arranging, or container_destroy, and eventually seat_set_focus),
then call transaction_commit_dirty which picks up those containers and
runs them through a transaction. The old methods of using transactions
(arrange_and_commit, or creating one manually) are now no longer
possible.
The highest-level code (execute_command and view implementation
handlers) will call transaction_commit_dirty, so most other code just
needs to set containers as dirty. This is done by arranging, but can
also be done by calling container_set_dirty.
Now the scroll_button will not accept:
- letters on string beginning;
- negative numbers.
What is tolerated:
- letters after number;
- rational numbers: the fraction after dot will be omitted.
This commit introduces a scroll_button option, which is intended to be
used with scroll_method. Now user can edit his sway config and add an
scroll_button option to device section.
- child would leak in the workspace_record_pid path
- removing malloc lets us get rid of That Comment nobody seems
to remember what it was about
- we would leak pipe fds on first fork failling
- we didn't return an error if second fork failed
- the final executed process still had both pipe fds
(would show up in /proc/23560/fd in launched programs)
- we would write twice to the pipe if execl failed for some reason
(e.g. if /bin/sh doesn't exist?!)
When you spawn a process with the exec command, sway now notes the
workspace you had focused and the pid of the child process, then assigns
that workspace to the child when its window appears.
Some of this is carried over from sway 0.15, but with some major
refactoring and centralization of state.