vello/piet-gpu/shader/elements.comp

329 lines
12 KiB
Plaintext
Raw Normal View History

// The element processing stage, first in the pipeline.
//
// This stage is primarily about applying transforms and computing bounding
// boxes. It is organized as a scan over the input elements, producing
// annotated output elements.
#version 450
#extension GL_GOOGLE_include_directive : enable
#define N_ROWS 4
#define WG_SIZE 32
#define LG_WG_SIZE 5
#define PARTITION_SIZE (WG_SIZE * N_ROWS)
layout(local_size_x = WG_SIZE, local_size_y = 1) in;
layout(set = 0, binding = 0) readonly buffer SceneBuf {
uint[] scene;
};
// It would be better to use the Vulkan memory model than
// "volatile" but shooting for compatibility here rather
// than doing things right.
layout(set = 0, binding = 1) volatile buffer StateBuf {
uint[] state;
};
// The annotated results are stored here.
layout(set = 0, binding = 2) buffer AnnotatedBuf {
uint[] annotated;
};
#include "scene.h"
#include "state.h"
#include "annotated.h"
#define StateBuf_stride (8 + 2 * State_size)
StateRef state_aggregate_ref(uint partition_ix) {
return StateRef(12 + partition_ix * StateBuf_stride);
}
StateRef state_prefix_ref(uint partition_ix) {
return StateRef(12 + partition_ix * StateBuf_stride + State_size);
}
uint state_flag_index(uint partition_ix) {
return 1 + partition_ix * (StateBuf_stride / 4);
}
// These correspond to X, A, P respectively in the prefix sum paper.
#define FLAG_NOT_READY 0
#define FLAG_AGGREGATE_READY 1
#define FLAG_PREFIX_READY 2
#define FLAG_SET_LINEWIDTH 1
#define FLAG_SET_BBOX 2
#define FLAG_RESET_BBOX 4
// This is almost like a monoid (the interaction between transformation and
// bounding boxes is approximate)
State combine_state(State a, State b) {
State c;
c.bbox.x = min(a.mat.x * b.bbox.x, a.mat.x * b.bbox.z) + min(a.mat.z * b.bbox.y, a.mat.z * b.bbox.w) + a.translate.x;
c.bbox.y = min(a.mat.y * b.bbox.x, a.mat.y * b.bbox.z) + min(a.mat.w * b.bbox.y, a.mat.w * b.bbox.w) + a.translate.y;
c.bbox.z = max(a.mat.x * b.bbox.x, a.mat.x * b.bbox.z) + max(a.mat.z * b.bbox.y, a.mat.z * b.bbox.w) + a.translate.x;
c.bbox.w = max(a.mat.y * b.bbox.x, a.mat.y * b.bbox.z) + max(a.mat.w * b.bbox.y, a.mat.w * b.bbox.w) + a.translate.y;
if ((a.flags & FLAG_RESET_BBOX) == 0 && b.bbox.z <= b.bbox.x && b.bbox.w <= b.bbox.y) {
c.bbox = a.bbox;
} else if ((a.flags & FLAG_RESET_BBOX) == 0 && (b.flags & FLAG_SET_BBOX) == 0 &&
(a.bbox.z > a.bbox.x || a.bbox.w > a.bbox.y))
{
c.bbox.xy = min(a.bbox.xy, c.bbox.xy);
c.bbox.zw = max(a.bbox.zw, c.bbox.zw);
}
// It would be more concise to cast to matrix types; ah well.
c.mat.x = a.mat.x * b.mat.x + a.mat.z * b.mat.y;
c.mat.y = a.mat.y * b.mat.x + a.mat.w * b.mat.y;
c.mat.z = a.mat.x * b.mat.z + a.mat.z * b.mat.w;
c.mat.w = a.mat.y * b.mat.z + a.mat.w * b.mat.w;
c.translate.x = a.mat.x * b.translate.x + a.mat.z * b.translate.y + a.translate.x;
c.translate.y = a.mat.y * b.translate.x + a.mat.w * b.translate.y + a.translate.y;
c.linewidth = (b.flags & FLAG_SET_LINEWIDTH) == 0 ? a.linewidth : b.linewidth;
c.flags = (a.flags & (FLAG_SET_LINEWIDTH | FLAG_SET_BBOX)) | b.flags;
c.flags |= (a.flags & FLAG_RESET_BBOX) >> 1;
return c;
}
State map_element(ElementRef ref, inout bool is_fill) {
// TODO: it would *probably* be more efficient to make the memory read patterns less
// divergent, though it would be more wasted memory.
uint tag = Element_tag(ref);
State c;
c.bbox = vec4(0.0, 0.0, 0.0, 0.0);
c.mat = vec4(1.0, 0.0, 0.0, 1.0);
c.translate = vec2(0.0, 0.0);
c.linewidth = 1.0; // TODO should be 0.0
c.flags = 0;
is_fill = false;
switch (tag) {
case Element_FillLine:
case Element_StrokeLine:
LineSeg line = Element_FillLine_read(ref);
c.bbox.xy = min(line.p0, line.p1);
c.bbox.zw = max(line.p0, line.p1);
break;
case Element_Quad:
QuadSeg quad = Element_Quad_read(ref);
c.bbox.xy = min(min(quad.p0, quad.p1), quad.p2);
c.bbox.zw = max(max(quad.p0, quad.p1), quad.p2);
break;
case Element_Cubic:
CubicSeg cubic = Element_Cubic_read(ref);
c.bbox.xy = min(min(cubic.p0, cubic.p1), min(cubic.p2, cubic.p3));
c.bbox.zw = max(max(cubic.p0, cubic.p1), max(cubic.p2, cubic.p3));
break;
case Element_Fill:
is_fill = true;
// fall-through
case Element_Stroke:
c.flags = FLAG_RESET_BBOX;
break;
case Element_SetLineWidth:
SetLineWidth lw = Element_SetLineWidth_read(ref);
c.linewidth = lw.width;
c.flags = FLAG_SET_LINEWIDTH;
break;
case Element_Transform:
Transform t = Element_Transform_read(ref);
c.mat = t.mat;
c.translate = t.translate;
break;
}
return c;
}
// Get the bounding box of a circle transformed by the matrix into an ellipse.
vec2 get_linewidth(State st) {
// See https://www.iquilezles.org/www/articles/ellipses/ellipses.htm
return 0.5 * st.linewidth * vec2(length(st.mat.xz), length(st.mat.yw));
}
// We should be able to use an array of structs but the NV shader compiler
// doesn't seem to like it :/
//shared State sh_state[WG_SIZE];
shared vec4 sh_mat[WG_SIZE];
shared vec2 sh_translate[WG_SIZE];
shared vec4 sh_bbox[WG_SIZE];
shared float sh_width[WG_SIZE];
shared uint sh_flags[WG_SIZE];
shared uint sh_min_fill;
shared uint sh_tile_ix;
shared State sh_prefix;
void main() {
State th_state[N_ROWS];
// Determine partition to process by atomic counter (described in Section
// 4.4 of prefix sum paper).
if (gl_LocalInvocationID.x == 0) {
sh_tile_ix = atomicAdd(state[0], 1);
sh_min_fill = ~0;
}
barrier();
uint tile_ix = sh_tile_ix;
uint ix = tile_ix * PARTITION_SIZE + gl_LocalInvocationID.x * N_ROWS;
ElementRef ref = ElementRef(ix * Element_size);
bool is_fill;
uint my_min_fill = ~0;
th_state[0] = map_element(ref, is_fill);
if (is_fill) my_min_fill = ix;
for (uint i = 1; i < N_ROWS; i++) {
// discussion question: would it be faster to load using more coherent patterns
// into thread memory? This is kinda strided.
th_state[i] = combine_state(th_state[i - 1], map_element(Element_index(ref, i), is_fill));
if (is_fill && my_min_fill == ~0) {
my_min_fill = ix + i;
}
}
atomicMin(sh_min_fill, my_min_fill);
State agg = th_state[N_ROWS - 1];
sh_mat[gl_LocalInvocationID.x] = agg.mat;
sh_translate[gl_LocalInvocationID.x] = agg.translate;
sh_bbox[gl_LocalInvocationID.x] = agg.bbox;
sh_width[gl_LocalInvocationID.x] = agg.linewidth;
sh_flags[gl_LocalInvocationID.x] = agg.flags;
for (uint i = 0; i < LG_WG_SIZE; i++) {
barrier();
if (gl_LocalInvocationID.x >= (1 << i)) {
State other;
uint ix = gl_LocalInvocationID.x - (1 << i);
other.mat = sh_mat[ix];
other.translate = sh_translate[ix];
other.bbox = sh_bbox[ix];
other.linewidth = sh_width[ix];
other.flags = sh_flags[ix];
agg = combine_state(other, agg);
}
barrier();
sh_mat[gl_LocalInvocationID.x] = agg.mat;
sh_translate[gl_LocalInvocationID.x] = agg.translate;
sh_bbox[gl_LocalInvocationID.x] = agg.bbox;
sh_width[gl_LocalInvocationID.x] = agg.linewidth;
sh_flags[gl_LocalInvocationID.x] = agg.flags;
}
State exclusive;
exclusive.bbox = vec4(0.0, 0.0, 0.0, 0.0);
exclusive.mat = vec4(1.0, 0.0, 0.0, 1.0);
exclusive.translate = vec2(0.0, 0.0);
exclusive.linewidth = 1.0; //TODO should be 0.0
exclusive.flags = 0;
// Publish aggregate for this partition
if (gl_LocalInvocationID.x == WG_SIZE - 1) {
// Note: with memory model, we'd want to generate the atomic store version of this.
State_write(state_aggregate_ref(tile_ix), agg);
uint flag = FLAG_AGGREGATE_READY;
memoryBarrierBuffer();
if (tile_ix == 0) {
State_write(state_prefix_ref(tile_ix), agg);
flag = FLAG_PREFIX_READY;
}
state[state_flag_index(tile_ix)] = flag;
if (tile_ix != 0) {
// step 4 of paper: decoupled lookback
uint look_back_ix = tile_ix - 1;
while (true) {
flag = state[state_flag_index(look_back_ix)];
if (flag == FLAG_PREFIX_READY) {
State their_prefix = State_read(state_prefix_ref(look_back_ix));
exclusive = combine_state(their_prefix, exclusive);
break;
} else if (flag == FLAG_AGGREGATE_READY) {
State their_agg = State_read(state_aggregate_ref(look_back_ix));
exclusive = combine_state(their_agg, exclusive);
look_back_ix--;
}
// else spin
}
// step 5 of paper: compute inclusive prefix
State inclusive_prefix = combine_state(exclusive, agg);
sh_prefix = exclusive;
State_write(state_prefix_ref(tile_ix), inclusive_prefix);
memoryBarrierBuffer();
flag = FLAG_PREFIX_READY;
state[state_flag_index(tile_ix)] = flag;
}
}
barrier();
my_min_fill = sh_min_fill;
if (tile_ix != 0) {
exclusive = sh_prefix;
}
State row = exclusive;
if (gl_LocalInvocationID.x > 0) {
uint ix = gl_LocalInvocationID.x - 1;
State other;
other.mat = sh_mat[ix];
other.translate = sh_translate[ix];
other.bbox = sh_bbox[ix];
other.linewidth = sh_width[ix];
other.flags = sh_flags[ix];
row = combine_state(row, other);
}
if (my_min_fill == ~0 && gl_LocalInvocationID.x == 0) {
state[state_flag_index(tile_ix) + 1] = 0x7f800000; // infinity
}
for (uint i = 0; i < N_ROWS; i++) {
State st = combine_state(row, th_state[i]);
if (my_min_fill == ix + i) {
state[state_flag_index(tile_ix) + 1] = floatBitsToUint(st.bbox.z);
}
// We write the state now for development purposes, but the
// actual goal is to write transformed and annotated elements.
//State_write(StateRef((ix + i) * State_size), st);
// Here we read again from the original scene. There may be
// gains to be had from stashing in shared memory or possibly
// registers (though register pressure is an issue).
ElementRef this_ref = Element_index(ref, i);
AnnotatedRef out_ref = AnnotatedRef((ix + i) * Annotated_size);
uint tag = Element_tag(this_ref);
switch (tag) {
case Element_FillLine:
case Element_StrokeLine:
LineSeg line = Element_StrokeLine_read(this_ref);
AnnoStrokeLineSeg anno_line;
anno_line.p0 = st.mat.xy * line.p0.x + st.mat.zw * line.p0.y + st.translate;
anno_line.p1 = st.mat.xy * line.p1.x + st.mat.zw * line.p1.y + st.translate;
if (tag == Element_StrokeLine) {
anno_line.stroke = get_linewidth(st);
} else {
anno_line.stroke = vec2(0.0);
}
// We do encoding a bit by hand to minimize divergence. Another approach
// would be to have a fill/stroke bool.
uint out_tag = tag == Element_FillLine ? Annotated_FillLine : Annotated_StrokeLine;
annotated[out_ref.offset >> 2] = out_tag;
AnnoStrokeLineSeg_write(AnnoStrokeLineSegRef(out_ref.offset + 4), anno_line);
break;
case Element_Stroke:
Stroke stroke = Element_Stroke_read(this_ref);
AnnoStroke anno_stroke;
anno_stroke.rgba_color = stroke.rgba_color;
vec2 lw = get_linewidth(st);
anno_stroke.bbox = st.bbox + vec4(-lw, lw);
anno_stroke.linewidth = st.linewidth * sqrt(st.mat.x * st.mat.w - st.mat.y * st.mat.z);
Annotated_Stroke_write(out_ref, anno_stroke);
break;
case Element_Fill:
Fill fill = Element_Fill_read(this_ref);
AnnoFill anno_fill;
anno_fill.rgba_color = fill.rgba_color;
anno_fill.bbox = st.bbox;
Annotated_Fill_write(out_ref, anno_fill);
break;
default:
Annotated_Nop_write(out_ref);
break;
}
}
}