2020-05-13 06:38:26 +10:00
|
|
|
// The element processing stage, first in the pipeline.
|
|
|
|
//
|
|
|
|
// This stage is primarily about applying transforms and computing bounding
|
|
|
|
// boxes. It is organized as a scan over the input elements, producing
|
|
|
|
// annotated output elements.
|
|
|
|
|
2020-05-12 13:01:06 +10:00
|
|
|
#version 450
|
|
|
|
#extension GL_GOOGLE_include_directive : enable
|
|
|
|
|
|
|
|
#define N_ROWS 4
|
|
|
|
#define WG_SIZE 32
|
|
|
|
#define LG_WG_SIZE 5
|
|
|
|
#define TILE_SIZE (WG_SIZE * N_ROWS)
|
|
|
|
|
|
|
|
layout(local_size_x = WG_SIZE, local_size_y = 1) in;
|
|
|
|
|
|
|
|
layout(set = 0, binding = 0) readonly buffer SceneBuf {
|
|
|
|
uint[] scene;
|
|
|
|
};
|
|
|
|
|
2020-05-13 03:53:54 +10:00
|
|
|
// This will be used for inter-workgroup aggregates. In the
|
|
|
|
// meantime, for development, it has been used to store the
|
|
|
|
// scan of the state objects.
|
2020-05-12 13:01:06 +10:00
|
|
|
layout(set = 0, binding = 1) buffer StateBuf {
|
|
|
|
uint[] state;
|
|
|
|
};
|
|
|
|
|
2020-05-13 03:53:54 +10:00
|
|
|
// The annotated results are stored here.
|
|
|
|
layout(set = 0, binding = 2) buffer AnnotatedBuf {
|
|
|
|
uint[] annotated;
|
|
|
|
};
|
|
|
|
|
2020-05-12 13:01:06 +10:00
|
|
|
#include "scene.h"
|
|
|
|
#include "state.h"
|
2020-05-13 03:53:54 +10:00
|
|
|
#include "annotated.h"
|
2020-05-12 13:01:06 +10:00
|
|
|
|
|
|
|
#define FLAG_SET_LINEWIDTH 1
|
|
|
|
#define FLAG_RESET_BBOX 2
|
|
|
|
|
|
|
|
// This is almost like a monoid (the interaction between transformation and
|
|
|
|
// bounding boxes is approximate)
|
|
|
|
State combine_state(State a, State b) {
|
|
|
|
State c;
|
|
|
|
c.bbox.x = min(a.mat.x * b.bbox.x, a.mat.x * b.bbox.z) + min(a.mat.z * b.bbox.y, a.mat.z * b.bbox.w) + a.translate.x;
|
|
|
|
c.bbox.y = min(a.mat.y * b.bbox.x, a.mat.y * b.bbox.z) + min(a.mat.w * b.bbox.y, a.mat.w * b.bbox.w) + a.translate.y;
|
|
|
|
c.bbox.z = max(a.mat.x * b.bbox.x, a.mat.x * b.bbox.z) + max(a.mat.z * b.bbox.y, a.mat.z * b.bbox.w) + a.translate.x;
|
|
|
|
c.bbox.w = max(a.mat.y * b.bbox.x, a.mat.y * b.bbox.z) + max(a.mat.w * b.bbox.y, a.mat.w * b.bbox.w) + a.translate.y;
|
|
|
|
if ((a.flags & FLAG_RESET_BBOX) == 0 && b.bbox.z <= b.bbox.x && b.bbox.w <= b.bbox.y) {
|
|
|
|
c.bbox = a.bbox;
|
|
|
|
} else if ((a.flags & FLAG_RESET_BBOX) == 0 && (a.bbox.z > a.bbox.x || a.bbox.w > a.bbox.y)) {
|
|
|
|
c.bbox.xy = min(a.bbox.xy, c.bbox.xy);
|
|
|
|
c.bbox.zw = max(a.bbox.zw, c.bbox.zw);
|
|
|
|
}
|
|
|
|
// It would be more concise to cast to matrix types; ah well.
|
|
|
|
c.mat.x = a.mat.x * b.mat.x + a.mat.z * b.mat.y;
|
|
|
|
c.mat.y = a.mat.y * b.mat.x + a.mat.w * b.mat.y;
|
|
|
|
c.mat.z = a.mat.x * b.mat.z + a.mat.z * b.mat.w;
|
|
|
|
c.mat.w = a.mat.y * b.mat.z + a.mat.w * b.mat.w;
|
|
|
|
c.translate.x = a.mat.x * b.translate.x + a.mat.z * b.translate.y + a.translate.x;
|
|
|
|
c.translate.y = a.mat.y * b.translate.x + a.mat.w * b.translate.y + a.translate.y;
|
|
|
|
c.linewidth = (b.flags & FLAG_SET_LINEWIDTH) == 0 ? a.linewidth : b.linewidth;
|
|
|
|
c.flags = a.flags | b.flags;
|
|
|
|
return c;
|
|
|
|
}
|
|
|
|
|
|
|
|
State map_element(ElementRef ref) {
|
|
|
|
// TODO: it would *probably* be more efficient to make the memory read patterns less
|
|
|
|
// divergent, though it would be more wasted memory.
|
|
|
|
uint tag = Element_tag(ref);
|
|
|
|
State c;
|
|
|
|
c.bbox = vec4(0.0, 0.0, 0.0, 0.0);
|
|
|
|
c.mat = vec4(1.0, 0.0, 0.0, 1.0);
|
|
|
|
c.translate = vec2(0.0, 0.0);
|
|
|
|
c.linewidth = 0.0;
|
|
|
|
c.flags = 0;
|
|
|
|
switch (tag) {
|
|
|
|
case Element_Line:
|
|
|
|
LineSeg line = Element_Line_read(ref);
|
|
|
|
c.bbox.xy = min(line.p0, line.p1);
|
|
|
|
c.bbox.zw = max(line.p0, line.p1);
|
|
|
|
break;
|
|
|
|
case Element_Quad:
|
|
|
|
QuadSeg quad = Element_Quad_read(ref);
|
|
|
|
c.bbox.xy = min(min(quad.p0, quad.p1), quad.p2);
|
|
|
|
c.bbox.zw = max(max(quad.p0, quad.p1), quad.p2);
|
|
|
|
break;
|
|
|
|
case Element_Cubic:
|
|
|
|
CubicSeg cubic = Element_Cubic_read(ref);
|
|
|
|
c.bbox.xy = min(min(cubic.p0, cubic.p1), min(cubic.p2, cubic.p3));
|
|
|
|
c.bbox.zw = max(max(cubic.p0, cubic.p1), max(cubic.p2, cubic.p3));
|
|
|
|
break;
|
|
|
|
case Element_Fill:
|
|
|
|
case Element_Stroke:
|
|
|
|
c.flags = FLAG_RESET_BBOX;
|
|
|
|
break;
|
|
|
|
case Element_SetLineWidth:
|
|
|
|
SetLineWidth lw = Element_SetLineWidth_read(ref);
|
|
|
|
c.linewidth = lw.width;
|
|
|
|
c.flags = FLAG_SET_LINEWIDTH;
|
|
|
|
break;
|
|
|
|
case Element_Transform:
|
|
|
|
Transform t = Element_Transform_read(ref);
|
|
|
|
c.mat = t.mat;
|
|
|
|
c.translate = t.translate;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
return c;
|
|
|
|
}
|
|
|
|
|
2020-05-13 03:53:54 +10:00
|
|
|
// Get the bounding box of a circle transformed by the matrix into an ellipse.
|
|
|
|
vec2 get_linewidth(State st) {
|
|
|
|
// See https://www.iquilezles.org/www/articles/ellipses/ellipses.htm
|
|
|
|
return 0.5 * st.linewidth * vec2(length(st.mat.xz), length(st.mat.yw));
|
|
|
|
}
|
|
|
|
|
2020-05-12 13:01:06 +10:00
|
|
|
// We should be able to use an array of structs but the NV shader compiler
|
|
|
|
// doesn't seem to like it :/
|
|
|
|
//shared State sh_state[WG_SIZE];
|
|
|
|
shared vec4 sh_mat[WG_SIZE];
|
|
|
|
shared vec2 sh_translate[WG_SIZE];
|
|
|
|
shared vec4 sh_bbox[WG_SIZE];
|
|
|
|
shared float sh_width[WG_SIZE];
|
|
|
|
shared uint sh_flags[WG_SIZE];
|
|
|
|
|
|
|
|
void main() {
|
|
|
|
State th_state[N_ROWS];
|
|
|
|
// this becomes an atomic counter
|
|
|
|
uint tile_ix = gl_WorkGroupID.x;
|
|
|
|
|
|
|
|
uint ix = tile_ix * TILE_SIZE + gl_LocalInvocationID.x * N_ROWS;
|
|
|
|
ElementRef ref = ElementRef(ix * Element_size);
|
|
|
|
|
|
|
|
th_state[0] = map_element(ref);
|
|
|
|
for (uint i = 1; i < N_ROWS; i++) {
|
|
|
|
// discussion question: would it be faster to load using more coherent patterns
|
|
|
|
// into thread memory? This is kinda strided.
|
|
|
|
th_state[i] = combine_state(th_state[i - 1], map_element(Element_index(ref, i)));
|
|
|
|
}
|
|
|
|
State agg = th_state[N_ROWS - 1];
|
|
|
|
sh_mat[gl_LocalInvocationID.x] = agg.mat;
|
|
|
|
sh_translate[gl_LocalInvocationID.x] = agg.translate;
|
|
|
|
sh_bbox[gl_LocalInvocationID.x] = agg.bbox;
|
|
|
|
sh_width[gl_LocalInvocationID.x] = agg.linewidth;
|
|
|
|
sh_flags[gl_LocalInvocationID.x] = agg.flags;
|
|
|
|
for (uint i = 0; i < LG_WG_SIZE; i++) {
|
|
|
|
barrier();
|
|
|
|
if (gl_LocalInvocationID.x >= (1 << i)) {
|
|
|
|
State other;
|
|
|
|
uint ix = gl_LocalInvocationID.x - (1 << i);
|
|
|
|
other.mat = sh_mat[ix];
|
|
|
|
other.translate = sh_translate[ix];
|
|
|
|
other.bbox = sh_bbox[ix];
|
|
|
|
other.linewidth = sh_width[ix];
|
|
|
|
other.flags = sh_flags[ix];
|
|
|
|
agg = combine_state(other, agg);
|
|
|
|
}
|
|
|
|
barrier();
|
|
|
|
sh_mat[gl_LocalInvocationID.x] = agg.mat;
|
|
|
|
sh_translate[gl_LocalInvocationID.x] = agg.translate;
|
|
|
|
sh_bbox[gl_LocalInvocationID.x] = agg.bbox;
|
|
|
|
sh_width[gl_LocalInvocationID.x] = agg.linewidth;
|
|
|
|
sh_flags[gl_LocalInvocationID.x] = agg.flags;
|
|
|
|
}
|
|
|
|
|
|
|
|
// TODO: if last invocation in wg, publish agg.
|
|
|
|
|
|
|
|
barrier();
|
|
|
|
State exclusive;
|
|
|
|
exclusive.bbox = vec4(0.0, 0.0, 0.0, 0.0);
|
|
|
|
exclusive.mat = vec4(1.0, 0.0, 0.0, 1.0);
|
|
|
|
exclusive.translate = vec2(0.0, 0.0);
|
|
|
|
exclusive.linewidth = 0.0;
|
|
|
|
exclusive.flags = 0;
|
|
|
|
// TODO: do decoupled look-back
|
|
|
|
|
|
|
|
State row = exclusive;
|
|
|
|
if (gl_LocalInvocationID.x > 0) {
|
|
|
|
uint ix = gl_LocalInvocationID.x - 1;
|
|
|
|
State other;
|
|
|
|
other.mat = sh_mat[ix];
|
|
|
|
other.translate = sh_translate[ix];
|
|
|
|
other.bbox = sh_bbox[ix];
|
|
|
|
other.linewidth = sh_width[ix];
|
|
|
|
other.flags = sh_flags[ix];
|
|
|
|
row = combine_state(row, other);
|
|
|
|
}
|
|
|
|
for (uint i = 0; i < N_ROWS; i++) {
|
2020-05-13 03:53:54 +10:00
|
|
|
State st = combine_state(row, th_state[i]);
|
2020-05-12 13:01:06 +10:00
|
|
|
// We write the state now for development purposes, but the
|
|
|
|
// actual goal is to write transformed and annotated elements.
|
2020-05-13 03:53:54 +10:00
|
|
|
//State_write(StateRef((ix + i) * State_size), st);
|
|
|
|
|
|
|
|
// Here we read again from the original scene. There may be
|
|
|
|
// gains to be had from stashing in shared memory or possibly
|
|
|
|
// registers (though register pressure is an issue).
|
|
|
|
ElementRef this_ref = Element_index(ref, i);
|
|
|
|
AnnotatedRef out_ref = AnnotatedRef((ix + i) * Annotated_size);
|
|
|
|
uint tag = Element_tag(this_ref);
|
|
|
|
switch (tag) {
|
|
|
|
case Element_Line:
|
|
|
|
LineSeg line = Element_Line_read(this_ref);
|
|
|
|
AnnoLineSeg anno_line;
|
|
|
|
anno_line.p0 = st.mat.xz * line.p0.x + st.mat.yw * line.p0.y + st.translate;
|
|
|
|
anno_line.p1 = st.mat.xz * line.p1.x + st.mat.yw * line.p1.y + st.translate;
|
|
|
|
anno_line.stroke = get_linewidth(st);
|
|
|
|
Annotated_Line_write(out_ref, anno_line);
|
|
|
|
break;
|
|
|
|
case Element_Stroke:
|
|
|
|
Stroke stroke = Element_Stroke_read(this_ref);
|
|
|
|
AnnoStroke anno_stroke;
|
|
|
|
anno_stroke.rgba_color = stroke.rgba_color;
|
|
|
|
vec2 lw = get_linewidth(st);
|
|
|
|
anno_stroke.bbox = st.bbox + vec4(-lw, lw);
|
|
|
|
anno_stroke.linewidth = st.linewidth * sqrt(st.mat.x * st.mat.w - st.mat.y * st.mat.z);
|
|
|
|
Annotated_Stroke_write(out_ref, anno_stroke);
|
|
|
|
break;
|
2020-05-13 06:38:26 +10:00
|
|
|
case Element_Fill:
|
|
|
|
Fill fill = Element_Fill_read(this_ref);
|
|
|
|
AnnoFill anno_fill;
|
|
|
|
anno_fill.rgba_color = fill.rgba_color;
|
|
|
|
anno_fill.bbox = st.bbox;
|
|
|
|
Annotated_Fill_write(out_ref, anno_fill);
|
|
|
|
break;
|
2020-05-13 03:53:54 +10:00
|
|
|
default:
|
|
|
|
Annotated_Nop_write(out_ref);
|
|
|
|
break;
|
|
|
|
}
|
2020-05-12 13:01:06 +10:00
|
|
|
}
|
|
|
|
}
|