vello/piet-gpu-hal/src/vulkan.rs

1076 lines
36 KiB
Rust
Raw Normal View History

//! Vulkan implemenation of HAL trait.
use std::borrow::Cow;
use std::ffi::{CStr, CString};
use std::sync::Arc;
use ash::extensions::{ext::DebugUtils, khr};
use ash::version::{DeviceV1_0, EntryV1_0, InstanceV1_0};
use ash::{vk, Device, Entry, Instance};
use once_cell::sync::Lazy;
use crate::{Device as DeviceTrait, Error, ImageLayout};
pub struct VkInstance {
/// Retain the dynamic lib.
#[allow(unused)]
entry: Entry,
instance: Instance,
_dbg_loader: Option<DebugUtils>,
_dbg_callbk: Option<vk::DebugUtilsMessengerEXT>,
}
pub struct VkDevice {
device: Arc<RawDevice>,
physical_device: vk::PhysicalDevice,
device_mem_props: vk::PhysicalDeviceMemoryProperties,
queue: vk::Queue,
qfi: u32,
timestamp_period: f32,
}
struct RawDevice {
device: Device,
}
pub struct VkSurface {
surface: vk::SurfaceKHR,
surface_fn: khr::Surface,
}
pub struct VkSwapchain {
swapchain: vk::SwapchainKHR,
swapchain_fn: khr::Swapchain,
present_queue: vk::Queue,
acquisition_idx: usize,
acquisition_semaphores: Vec<vk::Semaphore>, // same length as `images`
images: Vec<vk::Image>,
extent: vk::Extent2D,
}
/// A handle to a buffer.
///
/// There is no lifetime tracking at this level; the caller is responsible
/// for destroying the buffer at the appropriate time.
pub struct Buffer {
buffer: vk::Buffer,
buffer_memory: vk::DeviceMemory,
size: u64,
}
pub struct Image {
image: vk::Image,
image_memory: vk::DeviceMemory,
image_view: vk::ImageView,
extent: vk::Extent3D,
}
pub struct Pipeline {
pipeline: vk::Pipeline,
descriptor_set_layout: vk::DescriptorSetLayout,
pipeline_layout: vk::PipelineLayout,
}
pub struct DescriptorSet {
descriptor_set: vk::DescriptorSet,
}
pub struct CmdBuf {
cmd_buf: vk::CommandBuffer,
device: Arc<RawDevice>,
}
pub struct QueryPool {
pool: vk::QueryPool,
n_queries: u32,
}
#[derive(Clone, Copy)]
pub struct MemFlags(vk::MemoryPropertyFlags);
unsafe extern "system" fn vulkan_debug_callback(
message_severity: vk::DebugUtilsMessageSeverityFlagsEXT,
message_type: vk::DebugUtilsMessageTypeFlagsEXT,
p_callback_data: *const vk::DebugUtilsMessengerCallbackDataEXT,
_user_data: *mut std::os::raw::c_void,
) -> vk::Bool32 {
let callback_data = &*p_callback_data;
let message_id_number: i32 = callback_data.message_id_number as i32;
let message_id_name = if callback_data.p_message_id_name.is_null() {
Cow::from("")
} else {
CStr::from_ptr(callback_data.p_message_id_name).to_string_lossy()
};
let message = if callback_data.p_message.is_null() {
Cow::from("")
} else {
CStr::from_ptr(callback_data.p_message).to_string_lossy()
};
println!(
"{:?}:\n{:?} [{} ({})] : {}\n",
message_severity, message_type, message_id_name, message_id_number, message,
);
vk::FALSE
}
static LAYERS: Lazy<Vec<&'static CStr>> = Lazy::new(|| {
let mut layers: Vec<&'static CStr> = vec![];
if cfg!(debug_assertions) {
layers.push(CStr::from_bytes_with_nul(b"VK_LAYER_KHRONOS_validation\0").unwrap());
}
layers
});
static EXTS: Lazy<Vec<&'static CStr>> = Lazy::new(|| {
let mut exts: Vec<&'static CStr> = vec![];
if cfg!(debug_assertions) {
exts.push(DebugUtils::name());
}
exts
});
impl VkInstance {
/// Create a new instance.
///
/// There's more to be done to make this suitable for integration with other
/// systems, but for now the goal is to make things simple.
///
/// The caller is responsible for making sure that window which owns the raw window handle
/// outlives the surface.
pub fn new(
window_handle: Option<&dyn raw_window_handle::HasRawWindowHandle>,
) -> Result<(VkInstance, Option<VkSurface>), Error> {
unsafe {
let app_name = CString::new("VkToy").unwrap();
let entry = Entry::new()?;
let exist_layers = entry.enumerate_instance_layer_properties()?;
let layers = LAYERS
.iter()
.filter_map(|&lyr| {
exist_layers
.iter()
.find(|x| CStr::from_ptr(x.layer_name.as_ptr()) == lyr)
.map(|_| lyr.as_ptr())
.or_else(|| {
println!(
"Unable to find layer: {}, have you installed the Vulkan SDK?",
lyr.to_string_lossy()
);
None
})
})
.collect::<Vec<_>>();
let exist_exts = entry.enumerate_instance_extension_properties()?;
let mut exts = EXTS
.iter()
.filter_map(|&ext| {
exist_exts
.iter()
.find(|x| CStr::from_ptr(x.extension_name.as_ptr()) == ext)
.map(|_| ext.as_ptr())
.or_else(|| {
println!(
"Unable to find extension: {}, have you installed the Vulkan SDK?",
ext.to_string_lossy()
);
None
})
})
.collect::<Vec<_>>();
let surface_extensions = match window_handle {
Some(ref handle) => ash_window::enumerate_required_extensions(*handle)?,
None => vec![],
};
for extension in surface_extensions {
exts.push(extension.as_ptr());
}
let instance = entry.create_instance(
&vk::InstanceCreateInfo::builder()
.application_info(
&vk::ApplicationInfo::builder()
.application_name(&app_name)
.application_version(0)
.engine_name(&app_name)
.api_version(vk::make_version(1, 0, 0)),
)
.enabled_layer_names(&layers)
.enabled_extension_names(&exts),
None,
)?;
let (_dbg_loader, _dbg_callbk) = if false {
let dbg_info = vk::DebugUtilsMessengerCreateInfoEXT::builder()
.message_severity(
vk::DebugUtilsMessageSeverityFlagsEXT::ERROR
| vk::DebugUtilsMessageSeverityFlagsEXT::WARNING,
)
.message_type(vk::DebugUtilsMessageTypeFlagsEXT::all())
.pfn_user_callback(Some(vulkan_debug_callback));
let dbg_loader = DebugUtils::new(&entry, &instance);
let dbg_callbk = dbg_loader
.create_debug_utils_messenger(&dbg_info, None)
.unwrap();
(Some(dbg_loader), Some(dbg_callbk))
} else {
(None, None)
};
let vk_surface = match window_handle {
Some(handle) => Some(VkSurface {
surface: ash_window::create_surface(&entry, &instance, handle, None)?,
surface_fn: khr::Surface::new(&entry, &instance),
}),
None => None,
};
let vk_instance = VkInstance {
entry,
instance,
_dbg_loader,
_dbg_callbk,
};
Ok((vk_instance, vk_surface))
}
}
/// Create a device from the instance, suitable for compute, with an optional surface.
///
/// # Safety
///
/// The caller is responsible for making sure that the instance outlives the device
/// and surface. We could enforce that, for example having an `Arc` of the raw instance,
/// but for now keep things simple.
pub unsafe fn device(&self, surface: Option<&VkSurface>) -> Result<VkDevice, Error> {
let devices = self.instance.enumerate_physical_devices()?;
let (pdevice, qfi) =
choose_compute_device(&self.instance, &devices, surface).ok_or("no suitable device")?;
let queue_priorities = [1.0];
let queue_create_infos = [vk::DeviceQueueCreateInfo::builder()
.queue_family_index(qfi)
.queue_priorities(&queue_priorities)
.build()];
let extensions = match surface {
Some(_) => vec![khr::Swapchain::name().as_ptr()],
None => vec![],
};
let create_info = vk::DeviceCreateInfo::builder()
.queue_create_infos(&queue_create_infos)
.enabled_extension_names(&extensions)
.build();
let device = self.instance.create_device(pdevice, &create_info, None)?;
let device_mem_props = self.instance.get_physical_device_memory_properties(pdevice);
let queue_index = 0;
let queue = device.get_device_queue(qfi, queue_index);
let device = Arc::new(RawDevice { device });
let props = self.instance.get_physical_device_properties(pdevice);
let timestamp_period = props.limits.timestamp_period;
Ok(VkDevice {
device,
physical_device: pdevice,
device_mem_props,
qfi,
queue,
timestamp_period,
})
}
pub unsafe fn swapchain(
&self,
device: &VkDevice,
surface: &VkSurface,
) -> Result<VkSwapchain, Error> {
let formats = surface
.surface_fn
.get_physical_device_surface_formats(device.physical_device, surface.surface)?;
let surface_format = formats
.iter()
.map(|surface_fmt| match surface_fmt.format {
vk::Format::UNDEFINED => {
vk::SurfaceFormatKHR {
format: vk::Format::B8G8R8A8_UNORM, // most common format on desktop
color_space: surface_fmt.color_space,
}
}
_ => *surface_fmt,
})
.next()
.ok_or("no surface format found")?;
let capabilities = surface
.surface_fn
.get_physical_device_surface_capabilities(device.physical_device, surface.surface)?;
let present_modes = surface
.surface_fn
.get_physical_device_surface_present_modes(device.physical_device, surface.surface)?;
let present_mode = present_modes
.into_iter()
.find(|mode| mode == &vk::PresentModeKHR::MAILBOX)
.unwrap_or(vk::PresentModeKHR::FIFO);
let image_count = 2; // TODO
let extent = capabilities.current_extent; // TODO: wayland for example will complain here ..
let create_info = vk::SwapchainCreateInfoKHR::builder()
.surface(surface.surface)
.min_image_count(image_count)
.image_format(surface_format.format)
.image_color_space(surface_format.color_space)
.image_extent(extent)
.image_array_layers(1)
.image_usage(vk::ImageUsageFlags::TRANSFER_DST)
.image_sharing_mode(vk::SharingMode::EXCLUSIVE)
.pre_transform(vk::SurfaceTransformFlagsKHR::IDENTITY)
.composite_alpha(vk::CompositeAlphaFlagsKHR::OPAQUE)
.present_mode(present_mode)
.clipped(true);
let swapchain_fn = khr::Swapchain::new(&self.instance, &device.device.device);
let swapchain = swapchain_fn.create_swapchain(&create_info, None)?;
let images = swapchain_fn.get_swapchain_images(swapchain)?;
let acquisition_semaphores = (0..images.len())
.map(|_| device.create_semaphore())
.collect::<Result<Vec<_>, Error>>()?;
Ok(VkSwapchain {
swapchain,
swapchain_fn,
present_queue: device.queue,
images,
acquisition_semaphores,
acquisition_idx: 0,
extent,
})
}
}
impl crate::Device for VkDevice {
type Buffer = Buffer;
type Image = Image;
type CmdBuf = CmdBuf;
type DescriptorSet = DescriptorSet;
type Pipeline = Pipeline;
type QueryPool = QueryPool;
type MemFlags = MemFlags;
type Fence = vk::Fence;
type Semaphore = vk::Semaphore;
fn create_buffer(&self, size: u64, mem_flags: MemFlags) -> Result<Buffer, Error> {
unsafe {
let device = &self.device.device;
let buffer = device.create_buffer(
&vk::BufferCreateInfo::builder()
.size(size)
.usage(
vk::BufferUsageFlags::STORAGE_BUFFER
| vk::BufferUsageFlags::TRANSFER_SRC
| vk::BufferUsageFlags::TRANSFER_DST,
)
.sharing_mode(vk::SharingMode::EXCLUSIVE),
None,
)?;
let mem_requirements = device.get_buffer_memory_requirements(buffer);
let mem_type = find_memory_type(
mem_requirements.memory_type_bits,
mem_flags.0,
&self.device_mem_props,
)
.unwrap(); // TODO: proper error
let buffer_memory = device.allocate_memory(
&vk::MemoryAllocateInfo::builder()
.allocation_size(mem_requirements.size)
.memory_type_index(mem_type),
None,
)?;
device.bind_buffer_memory(buffer, buffer_memory, 0)?;
Ok(Buffer {
buffer,
buffer_memory,
size,
})
}
}
unsafe fn create_image2d(
&self,
width: u32,
height: u32,
mem_flags: Self::MemFlags,
) -> Result<Self::Image, Error> {
let device = &self.device.device;
let extent = vk::Extent3D {
width,
height,
depth: 1,
};
let image = device.create_image(
&vk::ImageCreateInfo::builder()
.image_type(vk::ImageType::TYPE_2D)
.format(vk::Format::R8G8B8A8_UNORM)
.extent(extent)
.mip_levels(1)
.array_layers(1)
.samples(vk::SampleCountFlags::TYPE_1)
.tiling(vk::ImageTiling::OPTIMAL)
.initial_layout(vk::ImageLayout::UNDEFINED)
.usage(vk::ImageUsageFlags::STORAGE | vk::ImageUsageFlags::TRANSFER_SRC) // write in compute and blit src
.sharing_mode(vk::SharingMode::EXCLUSIVE),
None,
)?;
let mem_requirements = device.get_image_memory_requirements(image);
let mem_type = find_memory_type(
mem_requirements.memory_type_bits,
mem_flags.0,
&self.device_mem_props,
)
.unwrap(); // TODO: proper error
let image_memory = device.allocate_memory(
&vk::MemoryAllocateInfo::builder()
.allocation_size(mem_requirements.size)
.memory_type_index(mem_type),
None,
)?;
device.bind_image_memory(image, image_memory, 0)?;
let image_view = device.create_image_view(
&vk::ImageViewCreateInfo::builder()
.view_type(vk::ImageViewType::TYPE_2D)
.image(image)
.format(vk::Format::R8G8B8A8_UNORM)
.subresource_range(vk::ImageSubresourceRange {
aspect_mask: vk::ImageAspectFlags::COLOR,
base_mip_level: 0,
level_count: 1,
base_array_layer: 0,
layer_count: 1,
})
.components(vk::ComponentMapping {
r: vk::ComponentSwizzle::IDENTITY,
g: vk::ComponentSwizzle::IDENTITY,
b: vk::ComponentSwizzle::IDENTITY,
a: vk::ComponentSwizzle::IDENTITY,
})
.build(),
None,
)?;
Ok(Image {
image,
image_memory,
image_view,
extent,
})
}
unsafe fn create_fence(&self, signaled: bool) -> Result<Self::Fence, Error> {
let device = &self.device.device;
let mut flags = vk::FenceCreateFlags::empty();
if signaled {
flags |= vk::FenceCreateFlags::SIGNALED;
}
Ok(device.create_fence(&vk::FenceCreateInfo::builder().flags(flags).build(), None)?)
}
unsafe fn create_semaphore(&self) -> Result<Self::Semaphore, Error> {
let device = &self.device.device;
Ok(device.create_semaphore(&vk::SemaphoreCreateInfo::default(), None)?)
}
unsafe fn wait_and_reset(&self, fences: &[Self::Fence]) -> Result<(), Error> {
let device = &self.device.device;
device.wait_for_fences(fences, true, !0)?;
device.reset_fences(fences)?;
Ok(())
}
/// This creates a pipeline that runs over the buffer.
///
/// The descriptor set layout is just some number of buffers (this will change).
unsafe fn create_simple_compute_pipeline(
&self,
code: &[u8],
n_buffers: u32,
n_images: u32,
) -> Result<Pipeline, Error> {
let device = &self.device.device;
let mut bindings = Vec::new();
for i in 0..n_buffers {
bindings.push(
vk::DescriptorSetLayoutBinding::builder()
.binding(i)
.descriptor_type(vk::DescriptorType::STORAGE_BUFFER)
.descriptor_count(1)
.stage_flags(vk::ShaderStageFlags::COMPUTE)
.build(),
);
}
for i in n_buffers..n_buffers + n_images {
bindings.push(
vk::DescriptorSetLayoutBinding::builder()
.binding(i)
.descriptor_type(vk::DescriptorType::STORAGE_IMAGE)
.descriptor_count(1)
.stage_flags(vk::ShaderStageFlags::COMPUTE)
.build(),
);
}
let descriptor_set_layout = device.create_descriptor_set_layout(
&vk::DescriptorSetLayoutCreateInfo::builder().bindings(&bindings),
None,
)?;
let descriptor_set_layouts = [descriptor_set_layout];
// Create compute pipeline.
let code_u32 = convert_u32_vec(code);
let compute_shader_module = device
.create_shader_module(&vk::ShaderModuleCreateInfo::builder().code(&code_u32), None)?;
let entry_name = CString::new("main").unwrap();
let pipeline_layout = device.create_pipeline_layout(
&vk::PipelineLayoutCreateInfo::builder().set_layouts(&descriptor_set_layouts),
None,
)?;
let pipeline = device
.create_compute_pipelines(
vk::PipelineCache::null(),
&[vk::ComputePipelineCreateInfo::builder()
.stage(
vk::PipelineShaderStageCreateInfo::builder()
.stage(vk::ShaderStageFlags::COMPUTE)
.module(compute_shader_module)
.name(&entry_name)
.build(),
)
.layout(pipeline_layout)
.build()],
None,
)
.map_err(|(_pipeline, err)| err)?[0];
Ok(Pipeline {
pipeline,
pipeline_layout,
descriptor_set_layout,
})
}
unsafe fn create_descriptor_set(
&self,
pipeline: &Pipeline,
bufs: &[&Buffer],
images: &[&Image],
) -> Result<DescriptorSet, Error> {
let device = &self.device.device;
let mut descriptor_pool_sizes = Vec::new();
if !bufs.is_empty() {
descriptor_pool_sizes.push(
vk::DescriptorPoolSize::builder()
.ty(vk::DescriptorType::STORAGE_BUFFER)
.descriptor_count(bufs.len() as u32)
.build(),
);
}
if !images.is_empty() {
descriptor_pool_sizes.push(
vk::DescriptorPoolSize::builder()
.ty(vk::DescriptorType::STORAGE_IMAGE)
.descriptor_count(images.len() as u32)
.build(),
);
}
let descriptor_pool = device.create_descriptor_pool(
&vk::DescriptorPoolCreateInfo::builder()
.pool_sizes(&descriptor_pool_sizes)
.max_sets(1),
None,
)?;
let descriptor_set_layouts = [pipeline.descriptor_set_layout];
let descriptor_sets = device
.allocate_descriptor_sets(
&vk::DescriptorSetAllocateInfo::builder()
.descriptor_pool(descriptor_pool)
.set_layouts(&descriptor_set_layouts),
)
.unwrap();
for (i, buf) in bufs.iter().enumerate() {
let buf_info = vk::DescriptorBufferInfo::builder()
.buffer(buf.buffer)
.offset(0)
.range(vk::WHOLE_SIZE)
.build();
device.update_descriptor_sets(
&[vk::WriteDescriptorSet::builder()
.dst_set(descriptor_sets[0])
.dst_binding(i as u32)
.descriptor_type(vk::DescriptorType::STORAGE_BUFFER)
.buffer_info(&[buf_info])
.build()],
&[],
);
}
for (i, image) in images.iter().enumerate() {
let binding = i + bufs.len();
let image_info = vk::DescriptorImageInfo::builder()
.sampler(vk::Sampler::null())
.image_view(image.image_view)
.image_layout(vk::ImageLayout::GENERAL)
.build();
device.update_descriptor_sets(
&[vk::WriteDescriptorSet::builder()
.dst_set(descriptor_sets[0])
.dst_binding(binding as u32)
.descriptor_type(vk::DescriptorType::STORAGE_IMAGE)
.image_info(&[image_info])
.build()],
&[],
);
}
Ok(DescriptorSet {
descriptor_set: descriptor_sets[0],
})
}
fn create_cmd_buf(&self) -> Result<CmdBuf, Error> {
unsafe {
let device = &self.device.device;
let command_pool = device.create_command_pool(
&vk::CommandPoolCreateInfo::builder()
.flags(vk::CommandPoolCreateFlags::RESET_COMMAND_BUFFER)
.queue_family_index(self.qfi),
None,
)?;
let cmd_buf = device.allocate_command_buffers(
&vk::CommandBufferAllocateInfo::builder()
.command_pool(command_pool)
.level(vk::CommandBufferLevel::PRIMARY)
.command_buffer_count(1),
)?[0];
Ok(CmdBuf {
cmd_buf,
device: self.device.clone(),
})
}
}
/// Create a query pool for timestamp queries.
fn create_query_pool(&self, n_queries: u32) -> Result<QueryPool, Error> {
unsafe {
let device = &self.device.device;
let pool = device.create_query_pool(
&vk::QueryPoolCreateInfo::builder()
.query_type(vk::QueryType::TIMESTAMP)
.query_count(n_queries),
None,
)?;
Ok(QueryPool { pool, n_queries })
}
}
unsafe fn reap_query_pool(&self, pool: &Self::QueryPool) -> Result<Vec<f64>, Error> {
let device = &self.device.device;
let mut buf = vec![0u64; pool.n_queries as usize];
device.get_query_pool_results(
pool.pool,
0,
pool.n_queries,
&mut buf,
vk::QueryResultFlags::TYPE_64,
)?;
let ts0 = buf[0];
let tsp = self.timestamp_period as f64 * 1e-9;
let result = buf[1..]
.iter()
.map(|ts| ts.wrapping_sub(ts0) as f64 * tsp)
.collect();
Ok(result)
}
/// Run the command buffer.
///
/// This version simply blocks until it's complete.
unsafe fn run_cmd_buf(
&self,
cmd_buf: &CmdBuf,
wait_semaphores: &[Self::Semaphore],
signal_semaphores: &[Self::Semaphore],
fence: Option<&Self::Fence>,
) -> Result<(), Error> {
let device = &self.device.device;
let fence = match fence {
Some(fence) => *fence,
None => vk::Fence::null(),
};
let wait_stages = wait_semaphores
.iter()
.map(|_| vk::PipelineStageFlags::ALL_COMMANDS)
.collect::<Vec<_>>();
device.queue_submit(
self.queue,
&[vk::SubmitInfo::builder()
.command_buffers(&[cmd_buf.cmd_buf])
.wait_semaphores(wait_semaphores)
.signal_semaphores(signal_semaphores)
.wait_dst_stage_mask(&wait_stages)
.build()],
fence,
)?;
Ok(())
}
unsafe fn read_buffer<T: Sized>(
&self,
buffer: &Buffer,
result: &mut Vec<T>,
) -> Result<(), Error> {
let device = &self.device.device;
let size = buffer.size as usize / std::mem::size_of::<T>();
let buf = device.map_memory(
buffer.buffer_memory,
0,
size as u64,
vk::MemoryMapFlags::empty(),
)?;
if size > result.len() {
result.reserve(size - result.len());
}
std::ptr::copy_nonoverlapping(buf as *const T, result.as_mut_ptr(), size);
result.set_len(size);
device.unmap_memory(buffer.buffer_memory);
Ok(())
}
unsafe fn write_buffer<T: Sized>(&self, buffer: &Buffer, contents: &[T]) -> Result<(), Error> {
let device = &self.device.device;
let buf = device.map_memory(
buffer.buffer_memory,
0,
std::mem::size_of_val(contents) as u64,
vk::MemoryMapFlags::empty(),
)?;
std::ptr::copy_nonoverlapping(contents.as_ptr(), buf as *mut T, contents.len());
device.unmap_memory(buffer.buffer_memory);
Ok(())
}
}
impl crate::CmdBuf<VkDevice> for CmdBuf {
unsafe fn begin(&mut self) {
self.device
.device
.begin_command_buffer(
self.cmd_buf,
&vk::CommandBufferBeginInfo::builder()
.flags(vk::CommandBufferUsageFlags::ONE_TIME_SUBMIT),
)
.unwrap();
}
unsafe fn finish(&mut self) {
self.device.device.end_command_buffer(self.cmd_buf).unwrap();
}
unsafe fn dispatch(
&mut self,
pipeline: &Pipeline,
descriptor_set: &DescriptorSet,
size: (u32, u32, u32),
) {
let device = &self.device.device;
device.cmd_bind_pipeline(
self.cmd_buf,
vk::PipelineBindPoint::COMPUTE,
pipeline.pipeline,
);
device.cmd_bind_descriptor_sets(
self.cmd_buf,
vk::PipelineBindPoint::COMPUTE,
pipeline.pipeline_layout,
0,
&[descriptor_set.descriptor_set],
&[],
);
device.cmd_dispatch(self.cmd_buf, size.0, size.1, size.2);
}
/// Insert a pipeline barrier for all memory accesses.
unsafe fn memory_barrier(&mut self) {
let device = &self.device.device;
device.cmd_pipeline_barrier(
self.cmd_buf,
vk::PipelineStageFlags::ALL_COMMANDS,
vk::PipelineStageFlags::ALL_COMMANDS,
vk::DependencyFlags::empty(),
&[vk::MemoryBarrier::builder()
.src_access_mask(vk::AccessFlags::MEMORY_WRITE)
.dst_access_mask(vk::AccessFlags::MEMORY_READ)
.build()],
&[],
&[],
);
}
unsafe fn image_barrier(
&mut self,
image: &Image,
src_layout: ImageLayout,
dst_layout: ImageLayout,
) {
let device = &self.device.device;
device.cmd_pipeline_barrier(
self.cmd_buf,
vk::PipelineStageFlags::ALL_COMMANDS,
vk::PipelineStageFlags::ALL_COMMANDS,
vk::DependencyFlags::empty(),
&[],
&[],
&[vk::ImageMemoryBarrier::builder()
.image(image.image)
.src_access_mask(vk::AccessFlags::MEMORY_WRITE)
.dst_access_mask(vk::AccessFlags::MEMORY_READ)
.old_layout(map_image_layout(src_layout))
.new_layout(map_image_layout(dst_layout))
.subresource_range(vk::ImageSubresourceRange {
aspect_mask: vk::ImageAspectFlags::COLOR,
base_mip_level: 0,
level_count: vk::REMAINING_MIP_LEVELS,
base_array_layer: 0,
layer_count: vk::REMAINING_MIP_LEVELS,
})
.build()],
);
}
unsafe fn clear_buffer(&self, buffer: &Buffer) {
let device = &self.device.device;
device.cmd_fill_buffer(self.cmd_buf, buffer.buffer, 0, vk::WHOLE_SIZE, 0);
}
unsafe fn copy_buffer(&self, src: &Buffer, dst: &Buffer) {
let device = &self.device.device;
let size = src.size.min(dst.size);
device.cmd_copy_buffer(
self.cmd_buf,
src.buffer,
dst.buffer,
&[vk::BufferCopy::builder().size(size).build()],
);
}
unsafe fn copy_image_to_buffer(&self, src: &Image, dst: &Buffer) {
let device = &self.device.device;
device.cmd_copy_image_to_buffer(
self.cmd_buf,
src.image,
vk::ImageLayout::TRANSFER_SRC_OPTIMAL,
dst.buffer,
&[vk::BufferImageCopy {
buffer_offset: 0,
buffer_row_length: 0, // tight packing
buffer_image_height: 0, // tight packing
image_subresource: vk::ImageSubresourceLayers {
aspect_mask: vk::ImageAspectFlags::COLOR,
mip_level: 0,
base_array_layer: 0,
layer_count: 1,
},
image_offset: vk::Offset3D { x: 0, y: 0, z: 0 },
image_extent: src.extent,
}],
);
}
unsafe fn blit_image(&self, src: &Image, dst: &Image) {
let device = &self.device.device;
device.cmd_blit_image(
self.cmd_buf,
src.image,
vk::ImageLayout::TRANSFER_SRC_OPTIMAL,
dst.image,
vk::ImageLayout::TRANSFER_DST_OPTIMAL,
&[vk::ImageBlit {
src_subresource: vk::ImageSubresourceLayers {
aspect_mask: vk::ImageAspectFlags::COLOR,
mip_level: 0,
base_array_layer: 0,
layer_count: 1,
},
src_offsets: [
vk::Offset3D { x: 0, y: 0, z: 0 },
vk::Offset3D {
x: src.extent.width as i32,
y: src.extent.height as i32,
z: src.extent.depth as i32,
},
],
dst_subresource: vk::ImageSubresourceLayers {
aspect_mask: vk::ImageAspectFlags::COLOR,
mip_level: 0,
base_array_layer: 0,
layer_count: 1,
},
dst_offsets: [
vk::Offset3D { x: 0, y: 0, z: 0 },
vk::Offset3D {
x: dst.extent.width as i32,
y: dst.extent.height as i32,
z: dst.extent.depth as i32,
},
],
}],
vk::Filter::LINEAR,
);
}
unsafe fn reset_query_pool(&mut self, pool: &QueryPool) {
let device = &self.device.device;
device.cmd_reset_query_pool(self.cmd_buf, pool.pool, 0, pool.n_queries);
}
unsafe fn write_timestamp(&mut self, pool: &QueryPool, query: u32) {
let device = &self.device.device;
device.cmd_write_timestamp(
self.cmd_buf,
vk::PipelineStageFlags::COMPUTE_SHADER,
pool.pool,
query,
);
}
}
impl crate::MemFlags for MemFlags {
fn device_local() -> Self {
MemFlags(vk::MemoryPropertyFlags::DEVICE_LOCAL)
}
fn host_coherent() -> Self {
MemFlags(vk::MemoryPropertyFlags::HOST_VISIBLE | vk::MemoryPropertyFlags::HOST_COHERENT)
}
}
impl VkSwapchain {
pub unsafe fn next(&mut self) -> Result<(usize, vk::Semaphore), Error> {
let acquisition_semaphore = self.acquisition_semaphores[self.acquisition_idx];
let (image_idx, _suboptimal) = self.swapchain_fn.acquire_next_image(
self.swapchain,
!0,
self.acquisition_semaphores[self.acquisition_idx],
vk::Fence::null(),
)?;
self.acquisition_idx = (self.acquisition_idx + 1) % self.acquisition_semaphores.len();
Ok((image_idx as usize, acquisition_semaphore))
}
pub unsafe fn image(&self, idx: usize) -> Image {
Image {
image: self.images[idx],
image_memory: vk::DeviceMemory::null(),
image_view: vk::ImageView::null(),
extent: vk::Extent3D {
width: self.extent.width,
height: self.extent.height,
depth: 1,
},
}
}
pub unsafe fn present(
&self,
image_idx: usize,
semaphores: &[vk::Semaphore],
) -> Result<bool, Error> {
Ok(self.swapchain_fn.queue_present(
self.present_queue,
&vk::PresentInfoKHR::builder()
.swapchains(&[self.swapchain])
.image_indices(&[image_idx as u32])
.wait_semaphores(semaphores)
.build(),
)?)
}
}
unsafe fn choose_compute_device(
instance: &Instance,
devices: &[vk::PhysicalDevice],
surface: Option<&VkSurface>,
) -> Option<(vk::PhysicalDevice, u32)> {
for pdevice in devices {
let props = instance.get_physical_device_queue_family_properties(*pdevice);
for (ix, info) in props.iter().enumerate() {
// Check for surface presentation support
if let Some(surface) = surface {
if !surface
.surface_fn
.get_physical_device_surface_support(*pdevice, ix as u32, surface.surface)
.unwrap()
{
continue;
}
}
if info.queue_flags.contains(vk::QueueFlags::COMPUTE) {
return Some((*pdevice, ix as u32));
}
}
}
None
}
fn find_memory_type(
memory_type_bits: u32,
property_flags: vk::MemoryPropertyFlags,
props: &vk::PhysicalDeviceMemoryProperties,
) -> Option<u32> {
for i in 0..props.memory_type_count {
if (memory_type_bits & (1 << i)) != 0
&& props.memory_types[i as usize]
.property_flags
.contains(property_flags)
{
return Some(i);
}
}
None
}
fn convert_u32_vec(src: &[u8]) -> Vec<u32> {
src.chunks(4)
.map(|chunk| {
let mut buf = [0; 4];
buf.copy_from_slice(chunk);
u32::from_le_bytes(buf)
})
.collect()
}
fn map_image_layout(layout: ImageLayout) -> vk::ImageLayout {
match layout {
ImageLayout::Undefined => vk::ImageLayout::UNDEFINED,
ImageLayout::Present => vk::ImageLayout::PRESENT_SRC_KHR,
ImageLayout::BlitSrc => vk::ImageLayout::TRANSFER_SRC_OPTIMAL,
ImageLayout::BlitDst => vk::ImageLayout::TRANSFER_DST_OPTIMAL,
ImageLayout::General => vk::ImageLayout::GENERAL,
}
}