Continue building out pipeline

Plumbs the new tiling scheme to k4. This works (stroke only) but still
has some performance issues.
This commit is contained in:
Raph Levien 2020-06-03 09:28:43 -07:00
parent 294f6fd1db
commit 70a9c17e23
11 changed files with 94 additions and 168 deletions

View file

@ -13,8 +13,9 @@ piet_gpu! {
end: [f32; 2], end: [f32; 2],
} }
struct CmdStroke { struct CmdStroke {
// Consider a specialization to one segment. // This is really a Ref<Tile>, but we don't have cross-module
seg_ref: Ref<SegChunk>, // references.
tile_ref: u32,
half_width: f32, half_width: f32,
rgba_color: u32, rgba_color: u32,
} }

View file

@ -171,7 +171,7 @@ fn main() -> Result<(), Error> {
let fence = device.create_fence(false)?; let fence = device.create_fence(false)?;
let mut cmd_buf = device.create_cmd_buf()?; let mut cmd_buf = device.create_cmd_buf()?;
let query_pool = device.create_query_pool(5)?; let query_pool = device.create_query_pool(7)?;
let mut ctx = PietGpuRenderContext::new(); let mut ctx = PietGpuRenderContext::new();
if let Some(input) = matches.value_of("INPUT") { if let Some(input) = matches.value_of("INPUT") {
@ -204,14 +204,16 @@ fn main() -> Result<(), Error> {
println!("Element kernel time: {:.3}ms", ts[0] * 1e3); println!("Element kernel time: {:.3}ms", ts[0] * 1e3);
println!("Tile allocation kernel time: {:.3}ms", (ts[1] - ts[0]) * 1e3); println!("Tile allocation kernel time: {:.3}ms", (ts[1] - ts[0]) * 1e3);
println!("Coarse path kernel time: {:.3}ms", (ts[2] - ts[1]) * 1e3); println!("Coarse path kernel time: {:.3}ms", (ts[2] - ts[1]) * 1e3);
/* println!("Binning kernel time: {:.3}ms", (ts[3] - ts[2]) * 1e3);
println!("Render kernel time: {:.3}ms", (ts[3] - ts[2]) * 1e3); println!("Coarse raster kernel time: {:.3}ms", (ts[4] - ts[3]) * 1e3);
*/ println!("Render kernel time: {:.3}ms", (ts[5] - ts[4]) * 1e3);
/*
let mut data: Vec<u32> = Default::default(); let mut data: Vec<u32> = Default::default();
device.read_buffer(&renderer.tile_buf, &mut data).unwrap(); device.read_buffer(&renderer.ptcl_buf, &mut data).unwrap();
piet_gpu::dump_k1_data(&data); piet_gpu::dump_k1_data(&data);
//trace_ptcl(&data); //trace_ptcl(&data);
*/
let mut img_data: Vec<u8> = Default::default(); let mut img_data: Vec<u8> = Default::default();
// Note: because png can use a `&[u8]` slice, we could avoid an extra copy // Note: because png can use a `&[u8]` slice, we could avoid an extra copy

View file

@ -15,17 +15,22 @@ layout(set = 0, binding = 1) buffer BinsBuf {
uint[] bins; uint[] bins;
}; };
layout(set = 0, binding = 2) buffer AllocBuf { layout(set = 0, binding = 2) buffer TileBuf {
uint[] tile;
};
layout(set = 0, binding = 3) buffer AllocBuf {
uint n_elements; uint n_elements;
uint alloc; uint alloc;
}; };
layout(set = 0, binding = 3) buffer PtclBuf { layout(set = 0, binding = 4) buffer PtclBuf {
uint[] ptcl; uint[] ptcl;
}; };
#include "annotated.h" #include "annotated.h"
#include "bins.h" #include "bins.h"
#include "tile.h"
#include "ptcl.h" #include "ptcl.h"
#define LG_N_PART_READ 8 #define LG_N_PART_READ 8
@ -197,37 +202,11 @@ void main() {
tag = Annotated_tag(ref); tag = Annotated_tag(ref);
} }
// Setup for coverage algorithm.
float a, b, c;
// Bounding box of element in pixel coordinates. // Bounding box of element in pixel coordinates.
float xmin, xmax, ymin, ymax; float xmin, xmax, ymin, ymax;
uint my_slice = th_ix / 32; uint my_slice = th_ix / 32;
uint my_mask = 1 << (th_ix & 31); uint my_mask = 1 << (th_ix & 31);
switch (tag) { switch (tag) {
case Annotated_FillLine:
case Annotated_StrokeLine:
AnnoStrokeLineSeg line = Annotated_StrokeLine_read(ref);
xmin = min(line.p0.x, line.p1.x) - line.stroke.x;
xmax = max(line.p0.x, line.p1.x) + line.stroke.x;
ymin = min(line.p0.y, line.p1.y) - line.stroke.y;
ymax = max(line.p0.y, line.p1.y) + line.stroke.y;
float dx = line.p1.x - line.p0.x;
float dy = line.p1.y - line.p0.y;
if (tag == Annotated_FillLine) {
// Set bit for backdrop sign calculation, 1 is +1, 0 is -1.
if (dy < 0) {
atomicOr(sh_bd_sign[my_slice], my_mask);
} else {
atomicAnd(sh_bd_sign[my_slice], ~my_mask);
}
}
atomicOr(sh_is_segment[my_slice], my_mask);
// Set up for per-scanline coverage formula, below.
float invslope = abs(dy) < 1e-9 ? 1e9 : dx / dy;
c = (line.stroke.x + abs(invslope) * (0.5 * float(TILE_HEIGHT_PX) + line.stroke.y)) * SX;
b = invslope; // Note: assumes square tiles, otherwise scale.
a = (line.p0.x - xy0.x - (line.p0.y - 0.5 * float(TILE_HEIGHT_PX) - xy0.y) * b) * SX;
break;
case Annotated_Fill: case Annotated_Fill:
case Annotated_Stroke: case Annotated_Stroke:
// Note: we take advantage of the fact that fills and strokes // Note: we take advantage of the fact that fills and strokes
@ -237,10 +216,6 @@ void main() {
xmax = fill.bbox.z; xmax = fill.bbox.z;
ymin = fill.bbox.y; ymin = fill.bbox.y;
ymax = fill.bbox.w; ymax = fill.bbox.w;
// Just let the clamping to xmin and xmax determine the bounds.
a = 0.0;
b = 0.0;
c = 1e9;
break; break;
default: default:
ymin = 0; ymin = 0;
@ -254,37 +229,23 @@ void main() {
// Compute bounding box in tiles and clip to this bin. // Compute bounding box in tiles and clip to this bin.
int x0 = int(floor((xmin - xy0.x) * SX)); int x0 = int(floor((xmin - xy0.x) * SX));
int x1 = int(ceil((xmax - xy0.x) * SX)); int x1 = int(ceil((xmax - xy0.x) * SX));
int xr = int(ceil((right_edge - xy0.x) * SX));
int y0 = int(floor((ymin - xy0.y) * SY)); int y0 = int(floor((ymin - xy0.y) * SY));
int y1 = int(ceil((ymax - xy0.y) * SY)); int y1 = int(ceil((ymax - xy0.y) * SY));
x0 = clamp(x0, 0, N_TILE_X); x0 = clamp(x0, 0, N_TILE_X);
x1 = clamp(x1, x0, N_TILE_X); x1 = clamp(x1, x0, N_TILE_X);
xr = clamp(xr, 0, N_TILE_X);
y0 = clamp(y0, 0, N_TILE_Y); y0 = clamp(y0, 0, N_TILE_Y);
y1 = clamp(y1, y0, N_TILE_Y); y1 = clamp(y1, y0, N_TILE_Y);
float t = a + b * float(y0);
for (uint y = y0; y < y1; y++) { for (uint y = y0; y < y1; y++) {
uint xx0 = clamp(int(floor(t - c)), x0, x1); for (uint x = x0; x < x1; x++) {
uint xx1 = clamp(int(ceil(t + c)), x0, x1);
for (uint x = xx0; x < xx1; x++) {
atomicOr(sh_bitmaps[my_slice][y * N_TILE_X + x], my_mask); atomicOr(sh_bitmaps[my_slice][y * N_TILE_X + x], my_mask);
} }
if (tag == Annotated_FillLine && ymin <= xy0.y + float(y * TILE_HEIGHT_PX)) {
// Assign backdrop to all tiles to the right of the ray crossing the
// top edge of this tile, up to the right edge of the fill bbox.
float xray = t - 0.5 * b;
xx0 = max(int(ceil(xray)), 0);
for (uint x = xx0; x < xr; x++) {
atomicOr(sh_backdrop[my_slice][y * N_TILE_X + x], my_mask);
}
}
t += b;
} }
barrier(); barrier();
// We've computed coverage and other info for each element in the input, now for // We've computed coverage and other info for each element in the input, now for
// the output stage. We'll do segments first using a more parallel algorithm. // the output stage. We'll do segments first using a more parallel algorithm.
/*
uint seg_count = 0; uint seg_count = 0;
for (uint i = 0; i < N_SLICE; i++) { for (uint i = 0; i < N_SLICE; i++) {
seg_count += bitCount(sh_bitmaps[i][th_ix] & sh_is_segment[i]); seg_count += bitCount(sh_bitmaps[i][th_ix] & sh_is_segment[i]);
@ -372,45 +333,29 @@ void main() {
Segment seg = Segment(line.p0, line.p1, y_edge); Segment seg = Segment(line.p0, line.p1, y_edge);
Segment_write(SegmentRef(seg_alloc + Segment_size * ix), seg); Segment_write(SegmentRef(seg_alloc + Segment_size * ix), seg);
} }
*/
// Output non-segment elements for this tile. The thread does a sequential walk // Output non-segment elements for this tile. The thread does a sequential walk
// through the non-segment elements, and for segments, count and backdrop are // through the non-segment elements, and for segments, count and backdrop are
// aggregated using bit counting. // aggregated using bit counting.
uint slice_ix = 0; uint slice_ix = 0;
uint bitmap = sh_bitmaps[0][th_ix]; uint bitmap = sh_bitmaps[0][th_ix];
uint bd_bitmap = sh_backdrop[0][th_ix];
uint bd_sign = sh_bd_sign[0];
uint is_segment = sh_is_segment[0];
uint seg_start = th_ix == 0 ? 0 : sh_seg_count[th_ix - 1];
seg_count = 0;
while (true) { while (true) {
uint nonseg_bitmap = bitmap & ~is_segment; if (bitmap == 0) {
if (nonseg_bitmap == 0) {
backdrop += count_backdrop(bd_bitmap, bd_sign);
seg_count += bitCount(bitmap & is_segment);
slice_ix++; slice_ix++;
if (slice_ix == N_SLICE) { if (slice_ix == N_SLICE) {
break; break;
} }
bitmap = sh_bitmaps[slice_ix][th_ix]; bitmap = sh_bitmaps[slice_ix][th_ix];
bd_bitmap = sh_backdrop[slice_ix][th_ix]; if (bitmap == 0) {
bd_sign = sh_bd_sign[slice_ix];
is_segment = sh_is_segment[slice_ix];
nonseg_bitmap = bitmap & ~is_segment;
if (nonseg_bitmap == 0) {
continue; continue;
} }
} }
uint element_ref_ix = slice_ix * 32 + findLSB(nonseg_bitmap); uint element_ref_ix = slice_ix * 32 + findLSB(bitmap);
uint element_ix = sh_elements[element_ref_ix]; uint element_ix = sh_elements[element_ref_ix];
// Bits up to and including the lsb // Clear LSB
uint bd_mask = (nonseg_bitmap - 1) ^ nonseg_bitmap; bitmap &= bitmap - 1;
backdrop += count_backdrop(bd_bitmap & bd_mask, bd_sign);
seg_count += bitCount(bitmap & bd_mask & is_segment);
// Clear bits that have been consumed.
bd_bitmap &= ~bd_mask;
bitmap &= ~bd_mask;
// At this point, we read the element again from global memory. // At this point, we read the element again from global memory.
// If that turns out to be expensive, maybe we can pack it into // If that turns out to be expensive, maybe we can pack it into
@ -419,6 +364,7 @@ void main() {
tag = Annotated_tag(ref); tag = Annotated_tag(ref);
switch (tag) { switch (tag) {
/*
case Annotated_Fill: case Annotated_Fill:
if (last_chunk_n > 0 || seg_count > 0) { if (last_chunk_n > 0 || seg_count > 0) {
SegChunkRef chunk_ref = SegChunkRef(0); SegChunkRef chunk_ref = SegChunkRef(0);
@ -460,63 +406,34 @@ void main() {
seg_count = 0; seg_count = 0;
backdrop = 0; backdrop = 0;
break; break;
*/
case Annotated_Stroke: case Annotated_Stroke:
// TODO: reduce divergence & code duplication? Much of the // Because the only elements we're processing right now are
// fill and stroke processing is in common. // paths, we can just use the element index as the path index.
if (last_chunk_n > 0 || seg_count > 0) { // In future, when we're doing a bunch of stuff, the path index
SegChunkRef chunk_ref = SegChunkRef(0); // should probably be stored in the annotated element.
if (seg_count > 0) { uint path_ix = element_ix;
chunk_ref = alloc_seg_chunk(); Path path = Path_read(PathRef(path_ix * Path_size));
SegChunk chunk; // It may be we have a strong guarantee this will always be `true`, but
chunk.n = seg_count; // I prefer not to take chances.
chunk.next = SegChunkRef(0); if (tile_x >= path.bbox.x && tile_x < path.bbox.z && tile_y >= path.bbox.y && tile_y < path.bbox.w) {
uint seg_offset = seg_alloc + seg_start * Segment_size; uint stride = path.bbox.z - path.bbox.x;
chunk.segs = SegmentRef(seg_offset); uint tile_subix = (tile_y - path.bbox.y) * stride + tile_x - path.bbox.x;
SegChunk_write(chunk_ref, chunk); Tile tile = Tile_read(Tile_index(path.tiles, tile_subix));
} if (tile.tile.offset != 0) {
if (last_chunk_n > 0) {
SegChunk chunk;
chunk.n = last_chunk_n;
chunk.next = chunk_ref;
chunk.segs = last_chunk_segs;
SegChunk_write(last_chunk_ref, chunk);
} else {
first_seg_chunk = chunk_ref;
}
AnnoStroke stroke = Annotated_Stroke_read(ref); AnnoStroke stroke = Annotated_Stroke_read(ref);
CmdStroke cmd_stroke; CmdStroke cmd_stroke;
cmd_stroke.seg_ref = first_seg_chunk; cmd_stroke.tile_ref = tile.tile.offset;
cmd_stroke.half_width = 0.5 * stroke.linewidth; cmd_stroke.half_width = 0.5 * stroke.linewidth;
cmd_stroke.rgba_color = stroke.rgba_color; cmd_stroke.rgba_color = stroke.rgba_color;
alloc_cmd(cmd_ref, cmd_limit); alloc_cmd(cmd_ref, cmd_limit);
Cmd_Stroke_write(cmd_ref, cmd_stroke); Cmd_Stroke_write(cmd_ref, cmd_stroke);
cmd_ref.offset += Cmd_size; cmd_ref.offset += Cmd_size;
last_chunk_n = 0;
} }
seg_start += seg_count; }
seg_count = 0;
break;
default:
// This shouldn't happen, but just in case.
seg_start++;
break; break;
} }
} }
if (seg_count > 0) {
SegChunkRef chunk_ref = alloc_seg_chunk();
if (last_chunk_n > 0) {
SegChunk_write(last_chunk_ref, SegChunk(last_chunk_n, chunk_ref, last_chunk_segs));
} else {
first_seg_chunk = chunk_ref;
}
// TODO: free two registers by writing count and segments ref now,
// as opposed to deferring SegChunk write until all fields are known.
last_chunk_ref = chunk_ref;
last_chunk_n = seg_count;
uint seg_offset = seg_alloc + seg_start * Segment_size;
last_chunk_segs = SegmentRef(seg_offset);
}
barrier(); barrier();
rd_ix += N_TILE; rd_ix += N_TILE;

Binary file not shown.

View file

@ -17,9 +17,14 @@ layout(set = 0, binding = 0) buffer PtclBuf {
uint[] ptcl; uint[] ptcl;
}; };
layout(rgba8, set = 0, binding = 1) uniform writeonly image2D image; layout(set = 0, binding = 1) buffer TileBuf {
uint[] tile;
};
layout(rgba8, set = 0, binding = 2) uniform writeonly image2D image;
#include "ptcl.h" #include "ptcl.h"
#include "tile.h"
#include "setup.h" #include "setup.h"
@ -57,12 +62,9 @@ void main() {
CmdStroke stroke = Cmd_Stroke_read(cmd_ref); CmdStroke stroke = Cmd_Stroke_read(cmd_ref);
float df[CHUNK]; float df[CHUNK];
for (uint k = 0; k < CHUNK; k++) df[k] = 1e9; for (uint k = 0; k < CHUNK; k++) df[k] = 1e9;
SegChunkRef seg_chunk_ref = stroke.seg_ref; TileSegRef tile_seg_ref = TileSegRef(stroke.tile_ref);
do { do {
SegChunk seg_chunk = SegChunk_read(seg_chunk_ref); TileSeg seg = TileSeg_read(tile_seg_ref);
SegmentRef segs = seg_chunk.segs;
for (int i = 0; i < seg_chunk.n; i++) {
Segment seg = Segment_read(Segment_index(segs, i));
vec2 line_vec = seg.end - seg.start; vec2 line_vec = seg.end - seg.start;
for (uint k = 0; k < CHUNK; k++) { for (uint k = 0; k < CHUNK; k++) {
vec2 dpos = xy + vec2(0.5, 0.5) - seg.start; vec2 dpos = xy + vec2(0.5, 0.5) - seg.start;
@ -70,15 +72,15 @@ void main() {
float t = clamp(dot(line_vec, dpos) / dot(line_vec, line_vec), 0.0, 1.0); float t = clamp(dot(line_vec, dpos) / dot(line_vec, line_vec), 0.0, 1.0);
df[k] = min(df[k], length(line_vec * t - dpos)); df[k] = min(df[k], length(line_vec * t - dpos));
} }
} tile_seg_ref = seg.next;
seg_chunk_ref = seg_chunk.next; } while (tile_seg_ref.offset != 0);
} while (seg_chunk_ref.offset != 0);
fg_rgba = unpackUnorm4x8(stroke.rgba_color).wzyx; fg_rgba = unpackUnorm4x8(stroke.rgba_color).wzyx;
for (uint k = 0; k < CHUNK; k++) { for (uint k = 0; k < CHUNK; k++) {
float alpha = clamp(stroke.half_width + 0.5 - df[k], 0.0, 1.0); float alpha = clamp(stroke.half_width + 0.5 - df[k], 0.0, 1.0);
rgb[k] = mix(rgb[k], fg_rgba.rgb, alpha * fg_rgba.a); rgb[k] = mix(rgb[k], fg_rgba.rgb, alpha * fg_rgba.a);
} }
break; break;
/*
case Cmd_Fill: case Cmd_Fill:
CmdFill fill = Cmd_Fill_read(cmd_ref); CmdFill fill = Cmd_Fill_read(cmd_ref);
// Probably better to store as float, but conversion is no doubt cheap. // Probably better to store as float, but conversion is no doubt cheap.
@ -117,6 +119,7 @@ void main() {
rgb[k] = mix(rgb[k], fg_rgba.rgb, alpha * fg_rgba.a); rgb[k] = mix(rgb[k], fg_rgba.rgb, alpha * fg_rgba.a);
} }
break; break;
*/
case Cmd_Solid: case Cmd_Solid:
CmdSolid solid = Cmd_Solid_read(cmd_ref); CmdSolid solid = Cmd_Solid_read(cmd_ref);
fg_rgba = unpackUnorm4x8(solid.rgba_color).wzyx; fg_rgba = unpackUnorm4x8(solid.rgba_color).wzyx;

Binary file not shown.

View file

@ -78,7 +78,7 @@ void main() {
int stride = bbox.z - bbox.x; int stride = bbox.z - bbox.x;
int base = (y0 - bbox.y) * stride - bbox.x; int base = (y0 - bbox.y) * stride - bbox.x;
// TODO: can be tighter, use c to bound width // TODO: can be tighter, use c to bound width
uint n_tile_alloc = uint(stride * (bbox.w - bbox.y)); uint n_tile_alloc = uint((x1 - x0) * (y1 - y0));
// Consider using subgroups to aggregate atomic add. // Consider using subgroups to aggregate atomic add.
uint tile_offset = atomicAdd(alloc, n_tile_alloc * TileSeg_size); uint tile_offset = atomicAdd(alloc, n_tile_alloc * TileSeg_size);
TileSeg tile_seg; TileSeg tile_seg;

Binary file not shown.

View file

@ -68,7 +68,7 @@ CmdLineRef CmdLine_index(CmdLineRef ref, uint index) {
} }
struct CmdStroke { struct CmdStroke {
SegChunkRef seg_ref; uint tile_ref;
float half_width; float half_width;
uint rgba_color; uint rgba_color;
}; };
@ -220,7 +220,7 @@ CmdStroke CmdStroke_read(CmdStrokeRef ref) {
uint raw1 = ptcl[ix + 1]; uint raw1 = ptcl[ix + 1];
uint raw2 = ptcl[ix + 2]; uint raw2 = ptcl[ix + 2];
CmdStroke s; CmdStroke s;
s.seg_ref = SegChunkRef(raw0); s.tile_ref = raw0;
s.half_width = uintBitsToFloat(raw1); s.half_width = uintBitsToFloat(raw1);
s.rgba_color = raw2; s.rgba_color = raw2;
return s; return s;
@ -228,7 +228,7 @@ CmdStroke CmdStroke_read(CmdStrokeRef ref) {
void CmdStroke_write(CmdStrokeRef ref, CmdStroke s) { void CmdStroke_write(CmdStrokeRef ref, CmdStroke s) {
uint ix = ref.offset >> 2; uint ix = ref.offset >> 2;
ptcl[ix + 0] = s.seg_ref.offset; ptcl[ix + 0] = s.tile_ref;
ptcl[ix + 1] = floatBitsToUint(s.half_width); ptcl[ix + 1] = floatBitsToUint(s.half_width);
ptcl[ix + 2] = s.rgba_color; ptcl[ix + 2] = s.rgba_color;
} }

View file

@ -183,9 +183,9 @@ impl<D: Device> Renderer<D> {
device.write_buffer(&scene_buf, &scene)?; device.write_buffer(&scene_buf, &scene)?;
let state_buf = device.create_buffer(1 * 1024 * 1024, dev)?; let state_buf = device.create_buffer(1 * 1024 * 1024, dev)?;
let anno_buf = device.create_buffer(64 * 1024 * 1024, host)?; let anno_buf = device.create_buffer(64 * 1024 * 1024, dev)?;
let pathseg_buf = device.create_buffer(64 * 1024 * 1024, host)?; let pathseg_buf = device.create_buffer(64 * 1024 * 1024, dev)?;
let tile_buf = device.create_buffer(64 * 1024 * 1024, host)?; let tile_buf = device.create_buffer(64 * 1024 * 1024, dev)?;
let bin_buf = device.create_buffer(64 * 1024 * 1024, dev)?; let bin_buf = device.create_buffer(64 * 1024 * 1024, dev)?;
let ptcl_buf = device.create_buffer(48 * 1024 * 1024, dev)?; let ptcl_buf = device.create_buffer(48 * 1024 * 1024, dev)?;
let image_dev = device.create_image2d(WIDTH as u32, HEIGHT as u32, dev)?; let image_dev = device.create_image2d(WIDTH as u32, HEIGHT as u32, dev)?;
@ -228,10 +228,10 @@ impl<D: Device> Renderer<D> {
let bin_alloc_buf_dev = device.create_buffer(12, dev)?; let bin_alloc_buf_dev = device.create_buffer(12, dev)?;
// TODO: constants // TODO: constants
let bin_alloc_start = ((n_elements + 255) & !255) * 8; let bin_alloc_start = ((n_paths + 255) & !255) * 8;
device.write_buffer( device.write_buffer(
&bin_alloc_buf_host, &bin_alloc_buf_host,
&[n_elements as u32, 0, bin_alloc_start as u32], &[n_paths as u32, 0, bin_alloc_start as u32],
)?; )?;
let bin_code = include_bytes!("../shader/binning.spv"); let bin_code = include_bytes!("../shader/binning.spv");
let bin_pipeline = device.create_simple_compute_pipeline(bin_code, 4, 0)?; let bin_pipeline = device.create_simple_compute_pipeline(bin_code, 4, 0)?;
@ -250,16 +250,20 @@ impl<D: Device> Renderer<D> {
&[n_elements as u32, coarse_alloc_start as u32], &[n_elements as u32, coarse_alloc_start as u32],
)?; )?;
let coarse_code = include_bytes!("../shader/coarse.spv"); let coarse_code = include_bytes!("../shader/coarse.spv");
let coarse_pipeline = device.create_simple_compute_pipeline(coarse_code, 4, 0)?; let coarse_pipeline = device.create_simple_compute_pipeline(coarse_code, 5, 0)?;
let coarse_ds = device.create_descriptor_set( let coarse_ds = device.create_descriptor_set(
&coarse_pipeline, &coarse_pipeline,
&[&anno_buf, &bin_buf, &coarse_alloc_buf_dev, &ptcl_buf], &[&anno_buf, &bin_buf, &tile_buf, &coarse_alloc_buf_dev, &ptcl_buf],
&[], &[],
)?; )?;
let k4_code = include_bytes!("../shader/kernel4.spv"); let k4_code = include_bytes!("../shader/kernel4.spv");
let k4_pipeline = device.create_simple_compute_pipeline(k4_code, 1, 1)?; let k4_pipeline = device.create_simple_compute_pipeline(k4_code, 2, 1)?;
let k4_ds = device.create_descriptor_set(&k4_pipeline, &[&ptcl_buf], &[&image_dev])?; let k4_ds = device.create_descriptor_set(
&k4_pipeline,
&[&ptcl_buf, &tile_buf],
&[&image_dev]
)?;
Ok(Renderer { Ok(Renderer {
scene_buf, scene_buf,
@ -328,32 +332,31 @@ impl<D: Device> Renderer<D> {
&self.path_ds, &self.path_ds,
(((self.n_pathseg + 31) / 32) as u32, 1, 1), (((self.n_pathseg + 31) / 32) as u32, 1, 1),
); );
/* cmd_buf.write_timestamp(&query_pool, 3);
// Note: this barrier is not needed as an actual dependency between
// pipeline stages, but I am keeping it in so that timer queries are
// easier to interpret.
cmd_buf.memory_barrier();
cmd_buf.dispatch( cmd_buf.dispatch(
&self.bin_pipeline, &self.bin_pipeline,
&self.bin_ds, &self.bin_ds,
(((self.n_elements + 255) / 256) as u32, 1, 1), (((self.n_paths + 255) / 256) as u32, 1, 1),
); );
*/ cmd_buf.write_timestamp(&query_pool, 4);
cmd_buf.write_timestamp(&query_pool, 3);
cmd_buf.memory_barrier(); cmd_buf.memory_barrier();
/*
cmd_buf.dispatch( cmd_buf.dispatch(
&self.coarse_pipeline, &self.coarse_pipeline,
&self.coarse_ds, &self.coarse_ds,
(WIDTH as u32 / 256, HEIGHT as u32 / 256, 1), (WIDTH as u32 / 256, HEIGHT as u32 / 256, 1),
); );
*/ cmd_buf.write_timestamp(&query_pool, 5);
cmd_buf.write_timestamp(&query_pool, 4);
cmd_buf.memory_barrier(); cmd_buf.memory_barrier();
/*
cmd_buf.dispatch( cmd_buf.dispatch(
&self.k4_pipeline, &self.k4_pipeline,
&self.k4_ds, &self.k4_ds,
((WIDTH / TILE_W) as u32, (HEIGHT / TILE_H) as u32, 1), ((WIDTH / TILE_W) as u32, (HEIGHT / TILE_H) as u32, 1),
); );
cmd_buf.write_timestamp(&query_pool, 5); cmd_buf.write_timestamp(&query_pool, 6);
*/
cmd_buf.memory_barrier(); cmd_buf.memory_barrier();
cmd_buf.image_barrier(&self.image_dev, ImageLayout::General, ImageLayout::BlitSrc); cmd_buf.image_barrier(&self.image_dev, ImageLayout::General, ImageLayout::BlitSrc);
} }

View file

@ -49,8 +49,8 @@ impl PicoSvg {
for item in &self.items { for item in &self.items {
match item { match item {
Item::Fill(fill_item) => { Item::Fill(fill_item) => {
rc.fill(&fill_item.path, &fill_item.color); //rc.fill(&fill_item.path, &fill_item.color);
//rc.stroke(&fill_item.path, &fill_item.color, 1.0); rc.stroke(&fill_item.path, &fill_item.color, 1.0);
} }
Item::Stroke(stroke_item) => { Item::Stroke(stroke_item) => {
rc.stroke(&stroke_item.path, &stroke_item.color, stroke_item.width); rc.stroke(&stroke_item.path, &stroke_item.color, stroke_item.width);