vello/piet-gpu/shader/binning.comp
Raph Levien 03da52cff8 Start implementing fills
This should get the "right_edge" value for each segment plumbed through
to the binning phase. It also needs to be plumbed to coarse raster and
wired up there.

Also considering WIP because none of this logic has been tested yet.
2020-05-19 20:40:04 -07:00

227 lines
8.6 KiB
Plaintext

// The binning stage of the pipeline.
#version 450
#extension GL_GOOGLE_include_directive : enable
#include "setup.h"
layout(local_size_x = N_TILE, local_size_y = 1) in;
layout(set = 0, binding = 0) buffer AnnotatedBuf {
uint[] annotated;
};
// This is for scanning forward for right_edge data.
layout(set = 0, binding = 1) buffer StateBuf {
uint[] state;
};
layout(set = 0, binding = 2) buffer AllocBuf {
uint n_elements;
// Will be incremented atomically to claim tiles
uint tile_ix;
uint alloc;
};
layout(set = 0, binding = 3) buffer BinsBuf {
uint[] bins;
};
#include "annotated.h"
#include "state.h"
#include "bins.h"
// scale factors useful for converting coordinates to bins
#define SX (1.0 / float(N_TILE_X * TILE_WIDTH_PX))
#define SY (1.0 / float(N_TILE_Y * TILE_HEIGHT_PX))
// Constant not available in GLSL. Also consider uintBitsToFloat(0x7f800000)
#define INFINITY (1.0 / 0.0)
// Note: cudaraster has N_TILE + 1 to cut down on bank conflicts.
shared uint bitmaps[N_SLICE][N_TILE];
shared uint count[N_SLICE][N_TILE];
shared uint sh_my_tile;
shared uint sh_chunk_start[N_TILE];
shared uint sh_chunk_end[N_TILE];
shared uint sh_chunk_jump[N_TILE];
shared float sh_right_edge[N_TILE];
#define StateBuf_stride (4 + 2 * State_size)
StateRef state_aggregate_ref(uint partition_ix) {
return StateRef(8 + partition_ix * StateBuf_stride);
}
void main() {
BinChunkRef chunk_ref = BinChunkRef((gl_LocalInvocationID.x * N_WG + gl_WorkGroupID.x) * BIN_INITIAL_ALLOC);
uint wr_limit = chunk_ref.offset + BIN_INITIAL_ALLOC;
uint chunk_n = 0;
uint my_n_elements = n_elements;
while (true) {
if (gl_LocalInvocationID.x == 0) {
sh_my_tile = atomicAdd(tile_ix, 1);
}
barrier();
uint my_tile = sh_my_tile;
if (my_tile * N_TILE >= my_n_elements) {
break;
}
for (uint i = 0; i < N_SLICE; i++) {
bitmaps[i][gl_LocalInvocationID.x] = 0;
}
barrier();
// Read inputs and determine coverage of bins
uint element_ix = my_tile * N_TILE + gl_LocalInvocationID.x;
AnnotatedRef ref = AnnotatedRef(element_ix * Annotated_size);
uint tag = Annotated_Nop;
if (element_ix < my_n_elements) {
tag = Annotated_tag(ref);
}
int x0 = 0, y0 = 0, x1 = 0, y1 = 0;
float my_right_edge = INFINITY;
switch (tag) {
case Annotated_Line:
AnnoLineSeg line = Annotated_Line_read(ref);
x0 = int(floor((min(line.p0.x, line.p1.x) - line.stroke.x) * SX));
y0 = int(floor((min(line.p0.y, line.p1.y) - line.stroke.y) * SY));
x1 = int(ceil((max(line.p0.x, line.p1.x) + line.stroke.x) * SX));
y1 = int(ceil((max(line.p0.y, line.p1.y) + line.stroke.y) * SY));
break;
case Annotated_Fill:
case Annotated_Stroke:
// Note: we take advantage of the fact that fills and strokes
// have compatible layout.
AnnoFill fill = Annotated_Fill_read(ref);
x0 = int(floor(fill.bbox.x * SX));
y0 = int(floor(fill.bbox.y * SY));
x1 = int(ceil(fill.bbox.z * SX));
y1 = int(ceil(fill.bbox.w * SY));
my_right_edge = x1;
break;
}
// If the last element in this partition is a fill edge, then we need to do a
// look-forward to find the right edge of its corresponding fill. That data is
// recorded in aggregates computed in the element processing pass.
if (gl_LocalInvocationID.x == N_TILE - 1 && tag == Annotated_Line) {
uint aggregate_ix = (my_tile + 1) * ELEMENT_BINNING_RATIO;
// This is sequential but the expectation is that the amount of
// look-forward is small (performance may degrade in the case
// of massively complex paths).
do {
StateRef agg_ref = state_aggregate_ref(aggregate_ix);
my_right_edge = State_read(agg_ref).right_edge;
aggregate_ix++;
} while (isinf(my_right_edge));
}
// Now propagate right_edge backward, from fill to segment.
for (uint i = 0; i < LG_N_TILE; i++) {
// Note: we could try to cut down on write bandwidth here if the value hasn't
// changed, but not sure it's worth the complexity to track.
sh_right_edge[gl_LocalInvocationID.x] = my_right_edge;
barrier();
if (gl_LocalInvocationID.x + (1 << i) < N_TILE && isinf(my_right_edge)) {
my_right_edge = sh_right_edge[gl_LocalInvocationID.x + (1 << i)];
}
barrier();
}
// At this point, we run an iterator over the coverage area,
// trying to keep divergence low.
// Right now, it's just a bbox, but we'll get finer with
// segments.
x0 = clamp(x0, 0, N_TILE_X);
x1 = clamp(x1, x0, N_TILE_X);
y0 = clamp(y0, 0, N_TILE_Y);
y1 = clamp(y1, y0, N_TILE_Y);
if (x0 == x1) y1 = y0;
int x = x0, y = y0;
uint my_slice = gl_LocalInvocationID.x / 32;
uint my_mask = 1 << (gl_LocalInvocationID.x & 31);
while (y < y1) {
atomicOr(bitmaps[my_slice][y * N_TILE_X + x], my_mask);
x++;
if (x == x1) {
x = x0;
y++;
}
}
barrier();
// Allocate output segments.
uint element_count = 0;
for (uint i = 0; i < N_SLICE; i++) {
element_count += bitCount(bitmaps[i][gl_LocalInvocationID.x]);
count[i][gl_LocalInvocationID.x] = element_count;
}
// element_count is number of elements covering bin for this invocation.
if (element_count != 0) {
uint chunk_end;
uint chunk_new_start;
// Refactor to reduce code duplication?
if (chunk_n > 0) {
uint next_chunk = chunk_ref.offset + BinChunk_size + chunk_n * 4;
if (next_chunk + BinChunk_size + min(24, element_count * 4) > wr_limit) {
uint alloc_amount = max(BIN_ALLOC, BinChunk_size + element_count * 4);
// could try to reduce fragmentation if BIN_ALLOC is only a bit above needed
next_chunk = atomicAdd(alloc, alloc_amount);
wr_limit = next_chunk + alloc_amount;
}
BinChunk_write(chunk_ref, BinChunk(chunk_n, BinChunkRef(next_chunk)));
chunk_ref = BinChunkRef(next_chunk);
}
BinInstanceRef instance_ref = BinInstanceRef(chunk_ref.offset + BinChunk_size);
if (instance_ref.offset + element_count * 4 > wr_limit) {
chunk_end = wr_limit;
chunk_n = (wr_limit - instance_ref.offset) / 4;
uint alloc_amount = max(BIN_ALLOC, BinChunk_size + (element_count - chunk_n) * 4);
chunk_new_start = atomicAdd(alloc, alloc_amount);
wr_limit = chunk_new_start + alloc_amount;
BinChunk_write(chunk_ref, BinChunk(chunk_n, BinChunkRef(chunk_new_start)));
chunk_ref = BinChunkRef(chunk_new_start);
chunk_new_start += BinChunk_size;
chunk_n = element_count - chunk_n;
} else {
chunk_end = ~0;
chunk_new_start = ~0;
chunk_n = element_count;
}
sh_chunk_start[gl_LocalInvocationID.x] = instance_ref.offset;
sh_chunk_end[gl_LocalInvocationID.x] = chunk_end;
sh_chunk_jump[gl_LocalInvocationID.x] = chunk_new_start - chunk_end;
}
barrier();
// Use similar strategy as Laine & Karras paper; loop over bbox of bins
// touched by this element
x = x0;
y = y0;
while (y < y1) {
uint bin_ix = y * N_TILE_X + x;
uint out_mask = bitmaps[my_slice][bin_ix];
if ((out_mask & my_mask) != 0) {
uint idx = bitCount(out_mask & (my_mask - 1));
if (my_slice > 0) {
idx += count[my_slice - 1][bin_ix];
}
uint out_offset = sh_chunk_start[bin_ix] + idx * 4;
if (out_offset >= sh_chunk_end[bin_ix]) {
out_offset += sh_chunk_jump[bin_ix];
}
BinInstance_write(BinInstanceRef(out_offset), BinInstance(element_ix));
}
x++;
if (x == x1) {
x = x0;
y++;
}
}
}
BinChunk_write(chunk_ref, BinChunk(chunk_n, BinChunkRef(0)));
}