vello/piet-gpu-types/src/encoder.rs
Raph Levien 228bfc88cd Add scene types
This patch adds a module that contains both scene and ptcl types (very
lightly adapted from piet-metal), as well as infrastructure for encoding
Rust-side.

WIP, it's not wired up in either the shader or on the Rust side.
2020-04-16 18:19:58 -07:00

151 lines
3.5 KiB
Rust

// Copyright 2020 The xi-editor authors.
//! New-style encoders (supporting proc macros)
pub struct A;
/// A reference to an encoded object within a buffer
#[derive(Clone, Copy, Debug)]
pub struct Ref<T> {
offset: u32,
_phantom: std::marker::PhantomData<T>,
}
pub struct Encoder {
buf: Vec<u8>,
}
// TODO: we probably do want to encode slices, get rid of Sized bound
pub trait Encode: Sized {
/// Size if it's a fixed-size object, otherwise 0.
fn fixed_size() -> usize;
/// Encoded size, for both fixed and variable sized objects.
fn encoded_size(&self) -> usize {
Self::fixed_size()
}
/// Encode into a buffer; panics if not appropriately sized.
fn encode_to(&self, buf: &mut [u8]);
/// Allocate a chunk and encode, returning a reference.
fn encode(&self, encoder: &mut Encoder) -> Ref<Self> {
let size = self.encoded_size();
let (offset, buf) = encoder.alloc_chunk(size as u32);
self.encode_to(buf);
Ref::new(offset)
}
}
impl<T> Ref<T> {
fn new(offset: u32) -> Ref<T> {
Ref {
offset,
_phantom: Default::default(),
}
}
pub fn offset(&self) -> u32 {
self.offset
}
pub fn transmute<U>(&self) -> Ref<U> {
Ref::new(self.offset)
}
}
impl Encoder {
pub fn new() -> Encoder {
Encoder { buf: Vec::new() }
}
pub fn alloc_chunk(&mut self, size: u32) -> (u32, &mut [u8]) {
let offset = self.buf.len();
self.buf.resize(size as usize + offset, 0);
(offset as u32, &mut self.buf[offset..])
}
pub fn buf(&self) -> &[u8] {
&self.buf
}
pub fn buf_mut(&mut self) -> &mut [u8] {
&mut self.buf
}
}
impl<T> Encode for Ref<T> {
fn fixed_size() -> usize {
4
}
fn encode_to(&self, buf: &mut [u8]) {
buf[0..4].copy_from_slice(&self.offset.to_le_bytes());
}
}
// Encode impls for scalar and small vector types are as needed; it's a finite set of
// possibilities, so we could do it all with macros, but by hand is expedient.
impl Encode for u32 {
fn fixed_size() -> usize {
4
}
fn encode_to(&self, buf: &mut [u8]) {
buf[0..4].copy_from_slice(&self.to_le_bytes());
}
}
impl Encode for f32 {
fn fixed_size() -> usize {
4
}
fn encode_to(&self, buf: &mut [u8]) {
buf[0..4].copy_from_slice(&self.to_le_bytes());
}
}
impl Encode for [u16; 4] {
fn fixed_size() -> usize {
8
}
fn encode_to(&self, buf: &mut [u8]) {
buf[0..2].copy_from_slice(&self[0].to_le_bytes());
buf[2..4].copy_from_slice(&self[1].to_le_bytes());
buf[4..6].copy_from_slice(&self[2].to_le_bytes());
buf[6..8].copy_from_slice(&self[3].to_le_bytes());
}
}
impl Encode for [f32; 2] {
fn fixed_size() -> usize {
8
}
fn encode_to(&self, buf: &mut [u8]) {
buf[0..4].copy_from_slice(&self[0].to_le_bytes());
buf[4..8].copy_from_slice(&self[1].to_le_bytes());
}
}
// TODO: make this work for slices too, but need to deal with Sized bound
//
// Note: only works for vectors of fixed size objects.
impl<T: Encode> Encode for Vec<T> {
fn fixed_size() -> usize {
0
}
fn encoded_size(&self) -> usize {
self.len() * T::fixed_size()
}
fn encode_to(&self, buf: &mut [u8]) {
let size = T::fixed_size();
for (ix, val) in self.iter().enumerate() {
val.encode_to(&mut buf[ix * size..]);
}
}
}