winit-sonoma-fix/src/platform/linux/x11/window.rs
Osspial 8fd49a4dbe Add methods to get the position of a window's client area, relative to the desktop (#430)
* Add get_inner_position for windows, prototypes for other platforms

* Fix linux builds

* Implement get_inner_position for osx

* Add get_inner_pos implementations for other platforms

* Fixed get_inner_position on macOS

* Corrected set_position on macOS

* Added CHANGELOG entry
2018-04-16 21:40:30 -04:00

1267 lines
47 KiB
Rust

use MouseCursor;
use CreationError;
use CreationError::OsError;
use libc;
use std::borrow::Borrow;
use std::{mem, cmp, ptr};
use std::sync::{Arc, Mutex};
use std::os::raw::{c_int, c_long, c_uchar, c_uint, c_ulong, c_void};
use std::thread;
use std::time::Duration;
use CursorState;
use WindowAttributes;
use platform::PlatformSpecificWindowBuilderAttributes;
use platform::MonitorId as PlatformMonitorId;
use platform::x11::MonitorId as X11MonitorId;
use window::MonitorId as RootMonitorId;
use platform::x11::monitor::get_available_monitors;
use super::{ffi, util, XConnection, XError, WindowId, EventsLoop};
// TODO: remove me
fn with_c_str<F, T>(s: &str, f: F) -> T where F: FnOnce(*const libc::c_char) -> T {
use std::ffi::CString;
let c_str = CString::new(s.as_bytes().to_vec()).unwrap();
f(c_str.as_ptr())
}
#[derive(Debug)]
enum StateOperation {
Remove = 0, // _NET_WM_STATE_REMOVE
Add = 1, // _NET_WM_STATE_ADD
#[allow(dead_code)]
Toggle = 2, // _NET_WM_STATE_TOGGLE
}
impl From<bool> for StateOperation {
fn from(b: bool) -> Self {
if b {
StateOperation::Add
} else {
StateOperation::Remove
}
}
}
pub struct XWindow {
display: Arc<XConnection>,
window: ffi::Window,
root: ffi::Window,
screen_id: i32,
}
impl XWindow {
/// Get parent window of `child`
///
/// This method can return None if underlying xlib call fails.
///
/// # Unsafety
///
/// `child` must be a valid `Window`.
unsafe fn get_parent_window(&self, child: ffi::Window) -> Option<ffi::Window> {
let mut root: ffi::Window = mem::uninitialized();
let mut parent: ffi::Window = mem::uninitialized();
let mut children: *mut ffi::Window = ptr::null_mut();
let mut nchildren: libc::c_uint = mem::uninitialized();
let res = (self.display.xlib.XQueryTree)(
self.display.display,
child,
&mut root,
&mut parent,
&mut children,
&mut nchildren
);
if res == 0 {
return None;
}
// The list of children isn't used
if children != ptr::null_mut() {
(self.display.xlib.XFree)(children as *mut _);
}
Some(parent)
}
}
unsafe impl Send for XWindow {}
unsafe impl Sync for XWindow {}
unsafe impl Send for Window2 {}
unsafe impl Sync for Window2 {}
pub struct Window2 {
pub x: Arc<XWindow>,
cursor: Mutex<MouseCursor>,
cursor_state: Mutex<CursorState>,
supported_hints: Vec<ffi::Atom>,
wm_name: Option<String>,
}
fn get_supported_hints(xwin: &Arc<XWindow>) -> Vec<ffi::Atom> {
let supported_atom = unsafe { util::get_atom(&xwin.display, b"_NET_SUPPORTED\0") }
.expect("Failed to call XInternAtom (_NET_SUPPORTED)");
unsafe {
util::get_property(
&xwin.display,
xwin.root,
supported_atom,
ffi::XA_ATOM,
)
}.unwrap_or_else(|_| Vec::with_capacity(0))
}
fn get_wm_name(xwin: &Arc<XWindow>, _supported_hints: &[ffi::Atom]) -> Option<String> {
let check_atom = unsafe { util::get_atom(&xwin.display, b"_NET_SUPPORTING_WM_CHECK\0") }
.expect("Failed to call XInternAtom (_NET_SUPPORTING_WM_CHECK)");
let wm_name_atom = unsafe { util::get_atom(&xwin.display, b"_NET_WM_NAME\0") }
.expect("Failed to call XInternAtom (_NET_WM_NAME)");
// Mutter/Muffin/Budgie doesn't have _NET_SUPPORTING_WM_CHECK in its _NET_SUPPORTED, despite
// it working and being supported. This has been reported upstream, but due to the
// inavailability of time machines, we'll just try to get _NET_SUPPORTING_WM_CHECK
// regardless of whether or not the WM claims to support it.
//
// Blackbox 0.70 also incorrectly reports not supporting this, though that appears to be fixed
// in 0.72.
/*if !supported_hints.contains(&check_atom) {
return None;
}*/
// IceWM (1.3.x and earlier) doesn't report supporting _NET_WM_NAME, but will nonetheless
// provide us with a value for it. Note that the unofficial 1.4 fork of IceWM works fine.
/*if !supported_hints.contains(&wm_name_atom) {
return None;
}*/
// Of the WMs tested, only xmonad and dwm fail to provide a WM name.
// Querying this property on the root window will give us the ID of a child window created by
// the WM.
let root_window_wm_check = {
let result = unsafe {
util::get_property(
&xwin.display,
xwin.root,
check_atom,
ffi::XA_WINDOW,
)
};
let wm_check = result
.ok()
.and_then(|wm_check| wm_check.get(0).cloned());
if let Some(wm_check) = wm_check {
wm_check
} else {
return None;
}
};
// Querying the same property on the child window we were given, we should get this child
// window's ID again.
let child_window_wm_check = {
let result = unsafe {
util::get_property(
&xwin.display,
root_window_wm_check,
check_atom,
ffi::XA_WINDOW,
)
};
let wm_check = result
.ok()
.and_then(|wm_check| wm_check.get(0).cloned());
if let Some(wm_check) = wm_check {
wm_check
} else {
return None;
}
};
// These values should be the same.
if root_window_wm_check != child_window_wm_check {
return None;
}
// All of that work gives us a window ID that we can get the WM name from.
let wm_name = {
let utf8_string_atom = unsafe { util::get_atom(&xwin.display, b"UTF8_STRING\0") }
.unwrap_or(ffi::XA_STRING);
let result = unsafe {
util::get_property(
&xwin.display,
root_window_wm_check,
wm_name_atom,
utf8_string_atom,
)
};
// IceWM requires this. IceWM was also the only WM tested that returns a null-terminated
// string. For more fun trivia, IceWM is also unique in including version and uname
// information in this string (this means you'll have to be careful if you want to match
// against it, though).
// The unofficial 1.4 fork of IceWM still includes the extra details, but properly
// returns a UTF8 string that isn't null-terminated.
let no_utf8 = if let Err(ref err) = result {
err.is_actual_property_type(ffi::XA_STRING)
} else {
false
};
if no_utf8 {
unsafe {
util::get_property(
&xwin.display,
root_window_wm_check,
wm_name_atom,
ffi::XA_STRING,
)
}
} else {
result
}
}.ok();
wm_name.and_then(|wm_name| String::from_utf8(wm_name).ok())
}
impl Window2 {
pub fn new(ctx: &EventsLoop, window_attrs: &WindowAttributes,
pl_attribs: &PlatformSpecificWindowBuilderAttributes)
-> Result<Window2, CreationError>
{
let display = &ctx.display;
let dimensions = {
// x11 only applies constraints when the window is actively resized
// by the user, so we have to manually apply the initial constraints
let mut dimensions = window_attrs.dimensions.unwrap_or((800, 600));
if let Some(max) = window_attrs.max_dimensions {
dimensions.0 = cmp::min(dimensions.0, max.0);
dimensions.1 = cmp::min(dimensions.1, max.1);
}
if let Some(min) = window_attrs.min_dimensions {
dimensions.0 = cmp::max(dimensions.0, min.0);
dimensions.1 = cmp::max(dimensions.1, min.1);
}
dimensions
};
let screen_id = match pl_attribs.screen_id {
Some(id) => id,
None => unsafe { (display.xlib.XDefaultScreen)(display.display) },
};
// getting the root window
let root = ctx.root;
// creating
let mut set_win_attr = {
let mut swa: ffi::XSetWindowAttributes = unsafe { mem::zeroed() };
swa.colormap = if let Some(vi) = pl_attribs.visual_infos {
unsafe {
let visual = vi.visual;
(display.xlib.XCreateColormap)(display.display, root, visual, ffi::AllocNone)
}
} else { 0 };
swa.event_mask = ffi::ExposureMask | ffi::StructureNotifyMask |
ffi::VisibilityChangeMask | ffi::KeyPressMask | ffi::PointerMotionMask |
ffi::KeyReleaseMask | ffi::ButtonPressMask |
ffi::ButtonReleaseMask | ffi::KeymapStateMask;
swa.border_pixel = 0;
if window_attrs.transparent {
swa.background_pixel = 0;
}
swa.override_redirect = 0;
swa
};
let mut window_attributes = ffi::CWBorderPixel | ffi::CWColormap | ffi::CWEventMask;
if window_attrs.transparent {
window_attributes |= ffi::CWBackPixel;
}
// finally creating the window
let window = unsafe {
let win = (display.xlib.XCreateWindow)(display.display, root, 0, 0, dimensions.0 as libc::c_uint,
dimensions.1 as libc::c_uint, 0,
match pl_attribs.visual_infos {
Some(vi) => vi.depth,
None => ffi::CopyFromParent
},
ffi::InputOutput as libc::c_uint,
match pl_attribs.visual_infos {
Some(vi) => vi.visual,
None => ffi::CopyFromParent as *mut _
},
window_attributes,
&mut set_win_attr);
display.check_errors().expect("Failed to call XCreateWindow");
win
};
let x_window = Arc::new(XWindow {
display: display.clone(),
window,
root,
screen_id,
});
// These values will cease to be correct if the user replaces the WM during the life of
// the window, so hopefully they don't do that.
let supported_hints = get_supported_hints(&x_window);
let wm_name = get_wm_name(&x_window, &supported_hints);
let window = Window2 {
x: x_window,
cursor: Mutex::new(MouseCursor::Default),
cursor_state: Mutex::new(CursorState::Normal),
supported_hints,
wm_name,
};
// Title must be set before mapping, lest some tiling window managers briefly pick up on
// the initial un-titled window state
window.set_title(&window_attrs.title);
window.set_decorations(window_attrs.decorations);
{
let ref x_window: &XWindow = window.x.borrow();
// Enable drag and drop
unsafe {
let atom = util::get_atom(display, b"XdndAware\0")
.expect("Failed to call XInternAtom (XdndAware)");
let version = &5; // Latest version; hasn't changed since 2002
(display.xlib.XChangeProperty)(
display.display,
x_window.window,
atom,
ffi::XA_ATOM,
32,
ffi::PropModeReplace,
version,
1
);
display.check_errors().expect("Failed to set drag and drop properties");
}
// Set ICCCM WM_CLASS property based on initial window title
// Must be done *before* mapping the window by ICCCM 4.1.2.5
unsafe {
with_c_str(&*window_attrs.title, |c_name| {
let hint = (display.xlib.XAllocClassHint)();
(*hint).res_name = c_name as *mut libc::c_char;
(*hint).res_class = c_name as *mut libc::c_char;
(display.xlib.XSetClassHint)(display.display, x_window.window, hint);
display.check_errors().expect("Failed to call XSetClassHint");
(display.xlib.XFree)(hint as *mut _);
});
}
// set size hints
{
let mut size_hints = {
let size_hints = unsafe { (display.xlib.XAllocSizeHints)() };
util::XSmartPointer::new(&display, size_hints)
.expect("XAllocSizeHints returned null; out of memory")
};
(*size_hints).flags = ffi::PSize;
(*size_hints).width = dimensions.0 as c_int;
(*size_hints).height = dimensions.1 as c_int;
if let Some(dimensions) = window_attrs.min_dimensions {
(*size_hints).flags |= ffi::PMinSize;
(*size_hints).min_width = dimensions.0 as c_int;
(*size_hints).min_height = dimensions.1 as c_int;
}
if let Some(dimensions) = window_attrs.max_dimensions {
(*size_hints).flags |= ffi::PMaxSize;
(*size_hints).max_width = dimensions.0 as c_int;
(*size_hints).max_height = dimensions.1 as c_int;
}
unsafe {
(display.xlib.XSetWMNormalHints)(
display.display,
x_window.window,
size_hints.ptr,
);
}
display.check_errors().expect("Failed to call XSetWMNormalHints");
}
// Opt into handling window close
unsafe {
(display.xlib.XSetWMProtocols)(display.display, x_window.window, &ctx.wm_delete_window as *const _ as *mut _, 1);
display.check_errors().expect("Failed to call XSetWMProtocols");
(display.xlib.XFlush)(display.display);
display.check_errors().expect("Failed to call XFlush");
}
// Set visibility (map window)
if window_attrs.visible {
unsafe {
(display.xlib.XMapRaised)(display.display, x_window.window);
(display.xlib.XFlush)(display.display);
}
display.check_errors().expect("Failed to set window visibility");
}
// Attempt to make keyboard input repeat detectable
unsafe {
let mut supported_ptr = ffi::False;
(display.xlib.XkbSetDetectableAutoRepeat)(display.display, ffi::True, &mut supported_ptr);
if supported_ptr == ffi::False {
return Err(OsError(format!("XkbSetDetectableAutoRepeat failed")));
}
}
// Select XInput2 events
{
let mask = ffi::XI_MotionMask
| ffi::XI_ButtonPressMask | ffi::XI_ButtonReleaseMask
// | ffi::XI_KeyPressMask | ffi::XI_KeyReleaseMask
| ffi::XI_EnterMask | ffi::XI_LeaveMask
| ffi::XI_FocusInMask | ffi::XI_FocusOutMask
| if window_attrs.multitouch { ffi::XI_TouchBeginMask | ffi::XI_TouchUpdateMask | ffi::XI_TouchEndMask } else { 0 };
unsafe {
let mut event_mask = ffi::XIEventMask{
deviceid: ffi::XIAllMasterDevices,
mask: mem::transmute::<*const i32, *mut c_uchar>(&mask as *const i32),
mask_len: mem::size_of_val(&mask) as c_int,
};
(display.xinput2.XISelectEvents)(display.display, x_window.window,
&mut event_mask as *mut ffi::XIEventMask, 1);
};
}
// These properties must be set after mapping
window.set_maximized(window_attrs.maximized);
window.set_fullscreen(window_attrs.fullscreen.clone());
if window_attrs.visible {
unsafe {
// XSetInputFocus generates an error if the window is not visible,
// therefore we wait until it's the case.
loop {
let mut window_attributes = mem::uninitialized();
(display.xlib.XGetWindowAttributes)(display.display, x_window.window, &mut window_attributes);
display.check_errors().expect("Failed to call XGetWindowAttributes");
if window_attributes.map_state == ffi::IsViewable {
(display.xlib.XSetInputFocus)(
display.display,
x_window.window,
ffi::RevertToParent,
ffi::CurrentTime
);
display.check_errors().expect("Failed to call XSetInputFocus");
break;
}
// Wait about a frame to avoid too-busy waiting
thread::sleep(Duration::from_millis(16));
}
}
}
}
// returning
Ok(window)
}
fn set_netwm(
xconn: &Arc<XConnection>,
window: ffi::Window,
root: ffi::Window,
properties: (c_long, c_long, c_long, c_long),
operation: StateOperation
) {
let state_atom = unsafe { util::get_atom(xconn, b"_NET_WM_STATE\0") }
.expect("Failed to call XInternAtom (_NET_WM_STATE)");
unsafe {
util::send_client_msg(
xconn,
window,
root,
state_atom,
Some(ffi::SubstructureRedirectMask | ffi::SubstructureNotifyMask),
(
operation as c_long,
properties.0,
properties.1,
properties.2,
properties.3,
)
)
}.expect("Failed to send NET_WM hint.");
}
pub fn set_fullscreen(&self, monitor: Option<RootMonitorId>) {
match monitor {
None => {
self.set_fullscreen_hint(false);
},
Some(RootMonitorId { inner: PlatformMonitorId::X(monitor) }) => {
let screenpos = monitor.get_position();
self.set_position(screenpos.0 as i32, screenpos.1 as i32);
self.set_fullscreen_hint(true);
}
_ => {
eprintln!("[winit] Something's broken, got an unknown fullscreen state in X11");
}
}
}
pub fn get_current_monitor(&self) -> X11MonitorId {
let monitors = get_available_monitors(&self.x.display);
let default = monitors[0].clone();
let (wx,wy) = match self.get_position() {
Some(val) => (cmp::max(0,val.0) as u32, cmp::max(0,val.1) as u32),
None=> return default,
};
let (ww,wh) = match self.get_outer_size() {
Some(val) => val,
None=> return default,
};
// Opposite corner coordinates
let (wxo, wyo) = (wx+ww-1, wy+wh-1);
// Find the monitor with the biggest overlap with the window
let mut overlap = 0;
let mut find = default;
for monitor in monitors {
let (mx, my) = monitor.get_position();
let mx = mx as u32;
let my = my as u32;
let (mw, mh) = monitor.get_dimensions();
let (mxo, myo) = (mx+mw-1, my+mh-1);
let (ox, oy) = (cmp::max(wx, mx), cmp::max(wy, my));
let (oxo, oyo) = (cmp::min(wxo, mxo), cmp::min(wyo, myo));
let osize = if ox <= oxo || oy <= oyo { 0 } else { (oxo-ox)*(oyo-oy) };
if osize > overlap {
overlap = osize;
find = monitor;
}
}
find
}
pub fn set_maximized(&self, maximized: bool) {
let xconn = &self.x.display;
let horz_atom = unsafe { util::get_atom(xconn, b"_NET_WM_STATE_MAXIMIZED_HORZ\0") }
.expect("Failed to call XInternAtom (_NET_WM_STATE_MAXIMIZED_HORZ)");
let vert_atom = unsafe { util::get_atom(xconn, b"_NET_WM_STATE_MAXIMIZED_VERT\0") }
.expect("Failed to call XInternAtom (_NET_WM_STATE_MAXIMIZED_VERT)");
Window2::set_netwm(
xconn,
self.x.window,
self.x.root,
(horz_atom as c_long, vert_atom as c_long, 0, 0),
maximized.into()
);
}
fn set_fullscreen_hint(&self, fullscreen: bool) {
let xconn = &self.x.display;
let fullscreen_atom = unsafe { util::get_atom(xconn, b"_NET_WM_STATE_FULLSCREEN\0") }
.expect("Failed to call XInternAtom (_NET_WM_STATE_FULLSCREEN)");
Window2::set_netwm(
xconn,
self.x.window,
self.x.root,
(fullscreen_atom as c_long, 0, 0, 0),
fullscreen.into()
);
}
pub fn set_title(&self, title: &str) {
let wm_name = unsafe {
(self.x.display.xlib.XInternAtom)(self.x.display.display, b"_NET_WM_NAME\0".as_ptr() as *const _, 0)
};
self.x.display.check_errors().expect("Failed to call XInternAtom");
let wm_utf8_string = unsafe {
(self.x.display.xlib.XInternAtom)(self.x.display.display, b"UTF8_STRING\0".as_ptr() as *const _, 0)
};
self.x.display.check_errors().expect("Failed to call XInternAtom");
with_c_str(title, |c_title| unsafe {
(self.x.display.xlib.XStoreName)(self.x.display.display, self.x.window, c_title);
let len = title.as_bytes().len();
(self.x.display.xlib.XChangeProperty)(self.x.display.display, self.x.window,
wm_name, wm_utf8_string, 8, ffi::PropModeReplace,
c_title as *const u8, len as libc::c_int);
(self.x.display.xlib.XFlush)(self.x.display.display);
});
self.x.display.check_errors().expect("Failed to set window title");
}
pub fn set_decorations(&self, decorations: bool) {
#[repr(C)]
struct MotifWindowHints {
flags: c_ulong,
functions: c_ulong,
decorations: c_ulong,
input_mode: c_long,
status: c_ulong,
}
let wm_hints = unsafe { util::get_atom(&self.x.display, b"_MOTIF_WM_HINTS\0") }
.expect("Failed to call XInternAtom (_MOTIF_WM_HINTS)");
let hints = MotifWindowHints {
flags: 2, // MWM_HINTS_DECORATIONS
functions: 0,
decorations: decorations as _,
input_mode: 0,
status: 0,
};
unsafe {
(self.x.display.xlib.XChangeProperty)(
self.x.display.display,
self.x.window,
wm_hints,
wm_hints,
32, // struct members are longs
ffi::PropModeReplace,
&hints as *const _ as *const u8,
5 // struct has 5 members
);
(self.x.display.xlib.XFlush)(self.x.display.display);
}
self.x.display.check_errors().expect("Failed to set decorations");
}
pub fn show(&self) {
unsafe {
(self.x.display.xlib.XMapRaised)(self.x.display.display, self.x.window);
(self.x.display.xlib.XFlush)(self.x.display.display);
self.x.display.check_errors().expect("Failed to call XMapRaised");
}
}
pub fn hide(&self) {
unsafe {
(self.x.display.xlib.XUnmapWindow)(self.x.display.display, self.x.window);
(self.x.display.xlib.XFlush)(self.x.display.display);
self.x.display.check_errors().expect("Failed to call XUnmapWindow");
}
}
fn get_frame_extents(&self) -> Option<util::FrameExtents> {
let extents_atom = unsafe { util::get_atom(&self.x.display, b"_NET_FRAME_EXTENTS\0") }
.expect("Failed to call XInternAtom (_NET_FRAME_EXTENTS)");
if !self.supported_hints.contains(&extents_atom) {
return None;
}
// Of the WMs tested, xmonad, i3, dwm, IceWM (1.3.x and earlier), and blackbox don't
// support this. As this is part of EWMH (Extended Window Manager Hints), it's likely to
// be unsupported by many smaller WMs.
let extents: Option<Vec<c_ulong>> = unsafe {
util::get_property(
&self.x.display,
self.x.window,
extents_atom,
ffi::XA_CARDINAL,
)
}.ok();
extents.and_then(|extents| {
if extents.len() >= 4 {
Some(util::FrameExtents {
left: extents[0],
right: extents[1],
top: extents[2],
bottom: extents[3],
})
} else {
None
}
})
}
fn is_top_level(&self, id: ffi::Window) -> Option<bool> {
let client_list_atom = unsafe { util::get_atom(&self.x.display, b"_NET_CLIENT_LIST\0") }
.expect("Failed to call XInternAtom (_NET_CLIENT_LIST)");
if !self.supported_hints.contains(&client_list_atom) {
return None;
}
let client_list: Option<Vec<ffi::Window>> = unsafe {
util::get_property(
&self.x.display,
self.x.root,
client_list_atom,
ffi::XA_WINDOW,
)
}.ok();
client_list.map(|client_list| {
client_list.contains(&id)
})
}
fn get_geometry(&self) -> Option<util::WindowGeometry> {
// Position relative to root window.
// With rare exceptions, this is the position of a nested window. Cases where the window
// isn't nested are outlined in the comments throghout this function, but in addition to
// that, fullscreen windows sometimes aren't nested.
let (inner_x_rel_root, inner_y_rel_root, child) = unsafe {
let mut inner_x_rel_root: c_int = mem::uninitialized();
let mut inner_y_rel_root: c_int = mem::uninitialized();
let mut child: ffi::Window = mem::uninitialized();
(self.x.display.xlib.XTranslateCoordinates)(
self.x.display.display,
self.x.window,
self.x.root,
0,
0,
&mut inner_x_rel_root,
&mut inner_y_rel_root,
&mut child,
);
(inner_x_rel_root, inner_y_rel_root, child)
};
let (inner_x, inner_y, width, height, border) = unsafe {
let mut root: ffi::Window = mem::uninitialized();
// The same caveat outlined in the comment above for XTranslateCoordinates applies
// here as well. The only difference is that this position is relative to the parent
// window, rather than the root window.
let mut inner_x: c_int = mem::uninitialized();
let mut inner_y: c_int = mem::uninitialized();
// The width and height here are for the client area.
let mut width: c_uint = mem::uninitialized();
let mut height: c_uint = mem::uninitialized();
// xmonad and dwm were the only WMs tested that use the border return at all.
// The majority of WMs seem to simply fill it with 0 unconditionally.
let mut border: c_uint = mem::uninitialized();
let mut depth: c_uint = mem::uninitialized();
let status = (self.x.display.xlib.XGetGeometry)(
self.x.display.display,
self.x.window,
&mut root,
&mut inner_x,
&mut inner_y,
&mut width,
&mut height,
&mut border,
&mut depth,
);
if status == 0 {
return None;
}
(inner_x, inner_y, width, height, border)
};
// The first condition is only false for un-nested windows, but isn't always false for
// un-nested windows. Mutter/Muffin/Budgie and Marco present a mysterious discrepancy:
// when y is on the range [0, 2] and if the window has been unfocused since being
// undecorated (or was undecorated upon construction), the first condition is true,
// requiring us to rely on the second condition.
let nested = !(self.x.window == child || self.is_top_level(child) == Some(true));
// Hopefully the WM supports EWMH, allowing us to get exact info on the window frames.
if let Some(mut extents) = self.get_frame_extents() {
// Mutter/Muffin/Budgie and Marco preserve their decorated frame extents when
// decorations are disabled, but since the window becomes un-nested, it's easy to
// catch.
if !nested {
extents = util::FrameExtents::new(0, 0, 0, 0);
}
// The difference between the nested window's position and the outermost window's
// position is equivalent to the frame size. In most scenarios, this is equivalent to
// manually climbing the hierarchy as is done in the case below. Here's a list of
// known discrepancies:
// * Mutter/Muffin/Budgie gives decorated windows a margin of 9px (only 7px on top) in
// addition to a 1px semi-transparent border. The margin can be easily observed by
// using a screenshot tool to get a screenshot of a selected window, and is
// presumably used for drawing drop shadows. Getting window geometry information
// via hierarchy-climbing results in this margin being included in both the
// position and outer size, so a window positioned at (0, 0) would be reported as
// having a position (-10, -8).
// * Compiz has a drop shadow margin just like Mutter/Muffin/Budgie, though it's 10px
// on all sides, and there's no additional border.
// * Enlightenment otherwise gets a y position equivalent to inner_y_rel_root.
// Without decorations, there's no difference. This is presumably related to
// Enlightenment's fairly unique concept of window position; it interprets
// positions given to XMoveWindow as a client area position rather than a position
// of the overall window.
let abs_x = inner_x_rel_root - extents.left as c_int;
let abs_y = inner_y_rel_root - extents.top as c_int;
Some(util::WindowGeometry {
x: abs_x,
y: abs_y,
width,
height,
frame: extents,
})
} else if nested {
// If the position value we have is for a nested window used as the client area, we'll
// just climb up the hierarchy and get the geometry of the outermost window we're
// nested in.
let window = {
let root = self.x.root;
let mut window = self.x.window;
loop {
let candidate = unsafe {
self.x.get_parent_window(window).unwrap()
};
if candidate == root {
break window;
}
window = candidate;
}
};
let (outer_x, outer_y, outer_width, outer_height) = unsafe {
let mut root: ffi::Window = mem::uninitialized();
let mut outer_x: c_int = mem::uninitialized();
let mut outer_y: c_int = mem::uninitialized();
let mut outer_width: c_uint = mem::uninitialized();
let mut outer_height: c_uint = mem::uninitialized();
let mut border: c_uint = mem::uninitialized();
let mut depth: c_uint = mem::uninitialized();
let status = (self.x.display.xlib.XGetGeometry)(
self.x.display.display,
window,
&mut root,
&mut outer_x,
&mut outer_y,
&mut outer_width,
&mut outer_height,
&mut border,
&mut depth,
);
if status == 0 {
return None;
}
(outer_x, outer_y, outer_width, outer_height)
};
// Since we have the geometry of the outermost window and the geometry of the client
// area, we can figure out what's in between.
let frame = {
let diff_x = outer_width.saturating_sub(width);
let diff_y = outer_height.saturating_sub(height);
let offset_y = inner_y_rel_root.saturating_sub(outer_y) as c_uint;
let left = diff_x / 2;
let right = left;
let top = offset_y;
let bottom = diff_y.saturating_sub(offset_y);
util::FrameExtents::new(left.into(), right.into(), top.into(), bottom.into())
};
Some(util::WindowGeometry {
x: outer_x,
y: outer_y,
width,
height,
frame,
})
} else {
// This is the case for xmonad and dwm, AKA the only WMs tested that supplied a
// border value. This is convenient, since we can use it to get an accurate frame.
let frame = util::FrameExtents::from_border(border.into());
Some(util::WindowGeometry {
x: inner_x,
y: inner_y,
width,
height,
frame,
})
}
}
#[inline]
pub fn get_position(&self) -> Option<(i32, i32)> {
self.get_geometry().map(|geo| geo.get_position())
}
#[inline]
pub fn get_inner_position(&self) -> Option<(i32, i32)> {
self.get_geometry().map(|geo| geo.get_inner_position())
}
pub fn set_position(&self, mut x: i32, mut y: i32) {
if let Some(ref wm_name) = self.wm_name {
// There are a few WMs that set client area position rather than window position, so
// we'll translate for consistency.
if ["Enlightenment", "FVWM"].contains(&wm_name.as_str()) {
if let Some(extents) = self.get_frame_extents() {
x += extents.left as i32;
y += extents.top as i32;
}
}
}
unsafe {
(self.x.display.xlib.XMoveWindow)(
self.x.display.display,
self.x.window,
x as c_int,
y as c_int,
);
}
self.x.display.check_errors().expect("Failed to call XMoveWindow");
}
#[inline]
pub fn get_inner_size(&self) -> Option<(u32, u32)> {
self.get_geometry().map(|geo| geo.get_inner_size())
}
#[inline]
pub fn get_outer_size(&self) -> Option<(u32, u32)> {
self.get_geometry().map(|geo| geo.get_outer_size())
}
#[inline]
pub fn set_inner_size(&self, x: u32, y: u32) {
unsafe { (self.x.display.xlib.XResizeWindow)(self.x.display.display, self.x.window, x as libc::c_uint, y as libc::c_uint); }
self.x.display.check_errors().expect("Failed to call XResizeWindow");
}
unsafe fn update_normal_hints<F>(&self, callback: F) -> Result<(), XError>
where F: FnOnce(*mut ffi::XSizeHints) -> ()
{
let xconn = &self.x.display;
let size_hints = {
let size_hints = (xconn.xlib.XAllocSizeHints)();
util::XSmartPointer::new(&xconn, size_hints)
.expect("XAllocSizeHints returned null; out of memory")
};
let mut flags: c_long = mem::uninitialized();
(xconn.xlib.XGetWMNormalHints)(
xconn.display,
self.x.window,
size_hints.ptr,
&mut flags,
);
xconn.check_errors()?;
callback(size_hints.ptr);
(xconn.xlib.XSetWMNormalHints)(
xconn.display,
self.x.window,
size_hints.ptr,
);
xconn.check_errors()?;
Ok(())
}
pub fn set_min_dimensions(&self, dimensions: Option<(u32, u32)>) {
unsafe {
self.update_normal_hints(|size_hints| {
if let Some((width, height)) = dimensions {
(*size_hints).flags |= ffi::PMinSize;
(*size_hints).min_width = width as c_int;
(*size_hints).min_height = height as c_int;
} else {
(*size_hints).flags &= !ffi::PMinSize;
}
})
}.expect("Failed to call XSetWMNormalHints");
}
pub fn set_max_dimensions(&self, dimensions: Option<(u32, u32)>) {
unsafe {
self.update_normal_hints(|size_hints| {
if let Some((width, height)) = dimensions {
(*size_hints).flags |= ffi::PMaxSize;
(*size_hints).max_width = width as c_int;
(*size_hints).max_height = height as c_int;
} else {
(*size_hints).flags &= !ffi::PMaxSize;
}
})
}.expect("Failed to call XSetWMNormalHints");
}
#[inline]
pub fn get_xlib_display(&self) -> *mut c_void {
self.x.display.display as _
}
#[inline]
pub fn get_xlib_screen_id(&self) -> c_int {
self.x.screen_id
}
#[inline]
pub fn get_xlib_xconnection(&self) -> Arc<XConnection> {
self.x.display.clone()
}
#[inline]
pub fn platform_display(&self) -> *mut libc::c_void {
self.x.display.display as _
}
#[inline]
pub fn get_xlib_window(&self) -> c_ulong {
self.x.window
}
#[inline]
pub fn platform_window(&self) -> *mut libc::c_void {
self.x.window as _
}
pub fn get_xcb_connection(&self) -> *mut c_void {
unsafe {
(self.x.display.xlib_xcb.XGetXCBConnection)(self.get_xlib_display() as *mut _) as *mut _
}
}
fn load_cursor(&self, name: &str) -> ffi::Cursor {
use std::ffi::CString;
unsafe {
let c_string = CString::new(name.as_bytes()).unwrap();
(self.x.display.xcursor.XcursorLibraryLoadCursor)(self.x.display.display, c_string.as_ptr())
}
}
fn load_first_existing_cursor(&self, names :&[&str]) -> ffi::Cursor {
for name in names.iter() {
let xcursor = self.load_cursor(name);
if xcursor != 0 {
return xcursor;
}
}
0
}
fn get_cursor(&self, cursor: MouseCursor) -> ffi::Cursor {
let load = |name: &str| {
self.load_cursor(name)
};
let loadn = |names: &[&str]| {
self.load_first_existing_cursor(names)
};
// Try multiple names in some cases where the name
// differs on the desktop environments or themes.
//
// Try the better looking (or more suiting) names first.
match cursor {
MouseCursor::Alias => load("link"),
MouseCursor::Arrow => load("arrow"),
MouseCursor::Cell => load("plus"),
MouseCursor::Copy => load("copy"),
MouseCursor::Crosshair => load("crosshair"),
MouseCursor::Default => load("left_ptr"),
MouseCursor::Hand => loadn(&["hand2", "hand1"]),
MouseCursor::Help => load("question_arrow"),
MouseCursor::Move => load("move"),
MouseCursor::Grab => loadn(&["openhand", "grab"]),
MouseCursor::Grabbing => loadn(&["closedhand", "grabbing"]),
MouseCursor::Progress => load("left_ptr_watch"),
MouseCursor::AllScroll => load("all-scroll"),
MouseCursor::ContextMenu => load("context-menu"),
MouseCursor::NoDrop => loadn(&["no-drop", "circle"]),
MouseCursor::NotAllowed => load("crossed_circle"),
// Resize cursors
MouseCursor::EResize => load("right_side"),
MouseCursor::NResize => load("top_side"),
MouseCursor::NeResize => load("top_right_corner"),
MouseCursor::NwResize => load("top_left_corner"),
MouseCursor::SResize => load("bottom_side"),
MouseCursor::SeResize => load("bottom_right_corner"),
MouseCursor::SwResize => load("bottom_left_corner"),
MouseCursor::WResize => load("left_side"),
MouseCursor::EwResize => load("h_double_arrow"),
MouseCursor::NsResize => load("v_double_arrow"),
MouseCursor::NwseResize => loadn(&["bd_double_arrow", "size_bdiag"]),
MouseCursor::NeswResize => loadn(&["fd_double_arrow", "size_fdiag"]),
MouseCursor::ColResize => loadn(&["split_h", "h_double_arrow"]),
MouseCursor::RowResize => loadn(&["split_v", "v_double_arrow"]),
MouseCursor::Text => loadn(&["text", "xterm"]),
MouseCursor::VerticalText => load("vertical-text"),
MouseCursor::Wait => load("watch"),
MouseCursor::ZoomIn => load("zoom-in"),
MouseCursor::ZoomOut => load("zoom-out"),
MouseCursor::NoneCursor => self.create_empty_cursor(),
}
}
fn update_cursor(&self, cursor: ffi::Cursor) {
unsafe {
(self.x.display.xlib.XDefineCursor)(self.x.display.display, self.x.window, cursor);
if cursor != 0 {
(self.x.display.xlib.XFreeCursor)(self.x.display.display, cursor);
}
self.x.display.check_errors().expect("Failed to set or free the cursor");
}
}
pub fn set_cursor(&self, cursor: MouseCursor) {
let mut current_cursor = self.cursor.lock().unwrap();
*current_cursor = cursor;
if *self.cursor_state.lock().unwrap() != CursorState::Hide {
self.update_cursor(self.get_cursor(*current_cursor));
}
}
// TODO: This could maybe be cached. I don't think it's worth
// the complexity, since cursor changes are not so common,
// and this is just allocating a 1x1 pixmap...
fn create_empty_cursor(&self) -> ffi::Cursor {
use std::mem;
let data = 0;
unsafe {
let pixmap = (self.x.display.xlib.XCreateBitmapFromData)(self.x.display.display, self.x.window, &data, 1, 1);
if pixmap == 0 {
// Failed to allocate
return 0;
}
// We don't care about this color, since it only fills bytes
// in the pixmap which are not 0 in the mask.
let dummy_color: ffi::XColor = mem::uninitialized();
let cursor = (self.x.display.xlib.XCreatePixmapCursor)(self.x.display.display,
pixmap,
pixmap,
&dummy_color as *const _ as *mut _,
&dummy_color as *const _ as *mut _, 0, 0);
(self.x.display.xlib.XFreePixmap)(self.x.display.display, pixmap);
cursor
}
}
pub fn set_cursor_state(&self, state: CursorState) -> Result<(), String> {
use CursorState::{ Grab, Normal, Hide };
let mut cursor_state = self.cursor_state.lock().unwrap();
match (state, *cursor_state) {
(Normal, Normal) | (Hide, Hide) | (Grab, Grab) => return Ok(()),
_ => {},
}
match *cursor_state {
Grab => {
unsafe {
(self.x.display.xlib.XUngrabPointer)(self.x.display.display, ffi::CurrentTime);
self.x.display.check_errors().expect("Failed to call XUngrabPointer");
}
},
Normal => {},
Hide => self.update_cursor(self.get_cursor(*self.cursor.lock().unwrap())),
}
match state {
Normal => {
*cursor_state = state;
Ok(())
},
Hide => {
*cursor_state = state;
self.update_cursor(self.create_empty_cursor());
Ok(())
},
Grab => {
unsafe {
// Ungrab before grabbing to prevent passive grabs
// from causing AlreadyGrabbed
(self.x.display.xlib.XUngrabPointer)(self.x.display.display, ffi::CurrentTime);
match (self.x.display.xlib.XGrabPointer)(
self.x.display.display, self.x.window, ffi::True,
(ffi::ButtonPressMask | ffi::ButtonReleaseMask | ffi::EnterWindowMask |
ffi::LeaveWindowMask | ffi::PointerMotionMask | ffi::PointerMotionHintMask |
ffi::Button1MotionMask | ffi::Button2MotionMask | ffi::Button3MotionMask |
ffi::Button4MotionMask | ffi::Button5MotionMask | ffi::ButtonMotionMask |
ffi::KeymapStateMask) as libc::c_uint,
ffi::GrabModeAsync, ffi::GrabModeAsync,
self.x.window, 0, ffi::CurrentTime
) {
ffi::GrabSuccess => {
*cursor_state = state;
Ok(())
},
ffi::AlreadyGrabbed | ffi::GrabInvalidTime |
ffi::GrabNotViewable | ffi::GrabFrozen
=> Err("cursor could not be grabbed".to_string()),
_ => unreachable!(),
}
}
},
}
}
pub fn hidpi_factor(&self) -> f32 {
unsafe {
let x_px = (self.x.display.xlib.XDisplayWidth)(self.x.display.display, self.x.screen_id);
let y_px = (self.x.display.xlib.XDisplayHeight)(self.x.display.display, self.x.screen_id);
let x_mm = (self.x.display.xlib.XDisplayWidthMM)(self.x.display.display, self.x.screen_id);
let y_mm = (self.x.display.xlib.XDisplayHeightMM)(self.x.display.display, self.x.screen_id);
let ppmm = ((x_px as f32 * y_px as f32) / (x_mm as f32 * y_mm as f32)).sqrt();
((ppmm * (12.0 * 25.4 / 96.0)).round() / 12.0).max(1.0) // quantize with 1/12 step size.
}
}
pub fn set_cursor_position(&self, x: i32, y: i32) -> Result<(), ()> {
unsafe {
(self.x.display.xlib.XWarpPointer)(self.x.display.display, 0, self.x.window, 0, 0, 0, 0, x, y);
self.x.display.check_errors().map_err(|_| ())
}
}
#[inline]
pub fn id(&self) -> WindowId { WindowId(self.x.window) }
}