rp-hal-boards/rp2040-hal/src/pll.rs

309 lines
8.4 KiB
Rust
Raw Normal View History

2021-04-25 10:12:38 +02:00
//! Phase-Locked Loops (PLL)
// See [Chapter 2 Section 18](https://datasheets.raspberrypi.org/rp2040/rp2040_datasheet.pdf) for more details
use core::{
2021-04-29 20:35:47 +02:00
convert::{Infallible, TryFrom, TryInto},
2021-04-25 10:12:38 +02:00
marker::PhantomData,
2021-04-29 20:35:47 +02:00
ops::{Deref, Range, RangeInclusive},
2021-04-25 10:12:38 +02:00
};
use embedded_time::{
fixed_point::FixedPoint,
2021-04-29 20:35:47 +02:00
rate::{Generic, Hertz, Rate},
2021-04-25 10:12:38 +02:00
};
use nb::Error::WouldBlock;
use pac::RESETS;
2021-04-25 10:12:38 +02:00
use crate::{clocks::ClocksManager, resets::SubsystemReset};
2021-04-25 10:12:38 +02:00
/// State of the PLL
pub trait State {}
/// PLL is disabled.
pub struct Disabled {
refdiv: u8,
fbdiv: u16,
post_div1: u8,
post_div2: u8,
frequency: Hertz,
}
/// PLL is configured, started and locking into its designated frequency.
pub struct Locking {
2021-04-25 10:12:38 +02:00
post_div1: u8,
2021-04-29 20:35:47 +02:00
post_div2: u8,
frequency: Hertz,
2021-04-25 10:12:38 +02:00
}
/// PLL is locked : it delivers a steady frequency.
pub struct Locked {
frequency: Hertz,
}
2021-04-25 10:12:38 +02:00
impl State for Disabled {}
impl State for Locked {}
impl State for Locking {}
/// Trait to handle both underlying devices from the PAC (PLL_SYS & PLL_USB)
pub trait PhaseLockedLoopDevice:
Deref<Target = rp2040_pac::pll_sys::RegisterBlock> + SubsystemReset
{
}
2021-04-25 10:12:38 +02:00
impl PhaseLockedLoopDevice for rp2040_pac::PLL_SYS {}
impl PhaseLockedLoopDevice for rp2040_pac::PLL_USB {}
/// A PLL.
pub struct PhaseLockedLoop<S: State, D: PhaseLockedLoopDevice> {
device: D,
2021-04-29 20:35:47 +02:00
state: S,
2021-04-25 10:12:38 +02:00
}
impl<S: State, D: PhaseLockedLoopDevice> PhaseLockedLoop<S, D> {
fn transition<To: State>(self, state: To) -> PhaseLockedLoop<To, D> {
PhaseLockedLoop {
device: self.device,
2021-05-05 07:55:51 +02:00
state,
2021-04-25 10:12:38 +02:00
}
}
/// Releases the underlying device.
2021-04-29 20:35:47 +02:00
pub fn free(self) -> D {
2021-04-25 10:12:38 +02:00
self.device
}
}
/// Error type for the PLL module.
/// See Chapter 2, Section 18 §2 for details on constraints triggering these errors.
pub enum Error {
/// Proposed VCO frequency is out of range.
2021-05-09 09:42:31 +02:00
VcoFreqOutOfRange,
2021-04-25 10:12:38 +02:00
/// Feedback Divider value is out of range.
2021-05-09 09:42:31 +02:00
FeedbackDivOutOfRange,
2021-04-25 10:12:38 +02:00
/// Post Divider value is out of range.
PostDivOutOfRage,
/// Reference Frequency is out of range.
RefFreqOutOfRange,
/// Bad argument : overflows, bad conversion, ...
2021-04-29 20:35:47 +02:00
BadArgument,
2021-04-25 10:12:38 +02:00
}
/// Parameters for a PLL.
pub struct PLLConfig<R: Rate> {
/// Voltage Controlled Oscillator frequency.
pub vco_freq: R,
/// Reference divider
pub refdiv: u8,
/// Post Divider 1
pub post_div1: u8,
/// Post Divider 2
2021-04-29 20:35:47 +02:00
pub post_div2: u8,
}
/// Common configs for the two PLLs. Both assume the XOSC is cadenced at 12MHz !
/// See Chapter 2, Section 18, §2
pub mod common_configs {
use super::PLLConfig;
use embedded_time::rate::Megahertz;
/// Default, nominal configuration for PLL_SYS
pub const PLL_SYS_125MHZ: PLLConfig<Megahertz> = PLLConfig {
vco_freq: Megahertz(1500),
refdiv: 1,
post_div1: 6,
2021-04-29 20:35:47 +02:00
post_div2: 2,
};
/// Default, nominal configuration for PLL_USB.
pub const PLL_USB_48MHZ: PLLConfig<Megahertz> = PLLConfig {
vco_freq: Megahertz(480),
refdiv: 1,
post_div1: 5,
2021-04-29 20:35:47 +02:00
post_div2: 2,
};
}
2021-04-25 10:12:38 +02:00
impl<D: PhaseLockedLoopDevice> PhaseLockedLoop<Disabled, D> {
/// Instantiates a new Phase-Locked-Loop device.
pub fn new<R: Rate>(
dev: D,
2021-04-29 20:35:47 +02:00
xosc_frequency: Generic<u32>,
config: PLLConfig<R>,
) -> Result<PhaseLockedLoop<Disabled, D>, Error>
2021-04-29 20:35:47 +02:00
where
R: Into<Hertz<u64>>,
{
2021-05-05 07:55:51 +02:00
const VCO_FREQ_RANGE: RangeInclusive<Hertz<u32>> =
Hertz(400_000_000)..=Hertz(1_600_000_000);
2021-04-25 10:12:38 +02:00
const POSTDIV_RANGE: Range<u8> = 1..7;
const FBDIV_RANGE: Range<u16> = 16..320;
2021-04-25 10:12:38 +02:00
2021-04-25 19:45:45 +02:00
//First we convert our rate to Hertz<u64> as all other rates can be converted to that.
let vco_freq: Hertz<u64> = config.vco_freq.into();
//Then we try to downscale to u32.
let vco_freq: Hertz<u32> = vco_freq.try_into().map_err(|_| Error::BadArgument)?;
2021-04-25 10:12:38 +02:00
if !VCO_FREQ_RANGE.contains(&vco_freq) {
2021-05-09 09:42:31 +02:00
return Err(Error::VcoFreqOutOfRange);
2021-04-25 10:12:38 +02:00
}
2021-04-29 20:35:47 +02:00
if !POSTDIV_RANGE.contains(&config.post_div1) || !POSTDIV_RANGE.contains(&config.post_div2)
{
return Err(Error::PostDivOutOfRage);
2021-04-25 10:12:38 +02:00
}
let ref_freq_range: Range<Hertz<u32>> = Hertz(5_000_000)..vco_freq.div(16);
2021-04-25 10:12:38 +02:00
2021-04-29 20:35:47 +02:00
let ref_freq_hz = Hertz::<u32>::try_from(xosc_frequency)
.map_err(|_| Error::BadArgument)?
.checked_div(&(config.refdiv as u32))
.ok_or(Error::BadArgument)?;
2021-04-25 10:12:38 +02:00
if !ref_freq_range.contains(&ref_freq_hz) {
2021-04-29 20:35:47 +02:00
return Err(Error::RefFreqOutOfRange);
2021-04-25 10:12:38 +02:00
}
2021-04-29 20:35:47 +02:00
let fbdiv = vco_freq
2021-07-26 21:16:09 +02:00
.checked_div(&ref_freq_hz.integer())
2021-04-29 20:35:47 +02:00
.ok_or(Error::BadArgument)?;
2021-07-26 21:16:09 +02:00
let fbdiv: u16 = (fbdiv.integer())
2021-04-29 20:35:47 +02:00
.try_into()
.map_err(|_| Error::BadArgument)?;
2021-04-25 10:12:38 +02:00
if !FBDIV_RANGE.contains(&fbdiv) {
2021-05-09 09:42:31 +02:00
return Err(Error::FeedbackDivOutOfRange);
2021-04-25 10:12:38 +02:00
}
let refdiv = config.refdiv;
let post_div1 = config.post_div1;
let post_div2 = config.post_div2;
let frequency: Hertz =
(ref_freq_hz / refdiv as u32) * fbdiv as u32 / (post_div1 as u32 * post_div2 as u32);
Ok(PhaseLockedLoop {
state: Disabled {
refdiv,
fbdiv,
post_div1,
post_div2,
frequency,
},
device: dev,
})
}
/// Configures and starts the PLL : it switches to Locking state.
pub fn initialize(self, resets: &mut rp2040_pac::RESETS) -> PhaseLockedLoop<Locking, D> {
self.device.reset_bring_up(resets);
// Turn off PLL in case it is already running
self.device.pwr.reset();
self.device.fbdiv_int.reset();
self.device.cs.write(|w| unsafe {
w.refdiv().bits(self.state.refdiv);
w
});
2021-04-25 10:12:38 +02:00
self.device.fbdiv_int.write(|w| unsafe {
w.fbdiv_int().bits(self.state.fbdiv);
2021-04-25 10:12:38 +02:00
w
});
// Turn on PLL
2021-04-29 20:35:47 +02:00
self.device.pwr.modify(|_, w| {
w.pd().clear_bit();
w.vcopd().clear_bit();
2021-04-25 10:12:38 +02:00
w
});
let post_div1 = self.state.post_div1;
let post_div2 = self.state.post_div2;
let frequency = self.state.frequency;
2021-04-25 10:12:38 +02:00
self.transition(Locking {
2021-04-29 20:35:47 +02:00
post_div1,
post_div2,
frequency,
})
2021-04-25 10:12:38 +02:00
}
}
/// A token that's given when the PLL is properly locked, so we can safely transition to the next state.
pub struct LockedPLLToken<D> {
2021-04-29 20:35:47 +02:00
_private: PhantomData<D>,
2021-04-25 10:12:38 +02:00
}
impl<D: PhaseLockedLoopDevice> PhaseLockedLoop<Locking, D> {
/// Awaits locking of the PLL.
pub fn await_lock(&self) -> nb::Result<LockedPLLToken<D>, Infallible> {
if self.device.cs.read().lock().bit_is_clear() {
return Err(WouldBlock);
}
Ok(LockedPLLToken {
2021-04-29 20:35:47 +02:00
_private: PhantomData,
2021-04-25 10:12:38 +02:00
})
}
/// Exchanges a token for a Locked PLL.
pub fn get_locked(self, _token: LockedPLLToken<D>) -> PhaseLockedLoop<Locked, D> {
// Set up post dividers
self.device.prim.write(|w| unsafe {
w.postdiv1().bits(self.state.post_div1);
w.postdiv2().bits(self.state.post_div2);
w
});
// Turn on post divider
2021-04-29 20:35:47 +02:00
self.device.pwr.modify(|_, w| {
w.postdivpd().clear_bit();
2021-04-25 10:12:38 +02:00
w
});
let frequency = self.state.frequency;
self.transition(Locked { frequency })
}
}
impl<D: PhaseLockedLoopDevice> PhaseLockedLoop<Locked, D> {
/// Get the operating frequency for the PLL
pub fn operating_frequency(&self) -> Hertz {
self.state.frequency
2021-04-25 10:12:38 +02:00
}
}
/// Blocking helper method to setup the PLL without going through all the steps.
pub fn setup_pll_blocking<D: PhaseLockedLoopDevice, R: Rate>(
dev: D,
xosc_frequency: Generic<u32>,
config: PLLConfig<R>,
clocks: &mut ClocksManager,
resets: &mut RESETS,
) -> Result<PhaseLockedLoop<Locked, D>, Error>
where
R: Into<Hertz<u64>>,
{
// Before we touch PLLs, switch sys and ref cleanly away from their aux sources.
nb::block!(clocks.system_clock.reset_source_await()).unwrap();
nb::block!(clocks.reference_clock.reset_source_await()).unwrap();
let initialized_pll = PhaseLockedLoop::new(dev, xosc_frequency, config)?.initialize(resets);
let locked_pll_token = nb::block!(initialized_pll.await_lock()).unwrap();
Ok(initialized_pll.get_locked(locked_pll_token))
}