vello/piet-gpu/src/render_ctx.rs

492 lines
14 KiB
Rust
Raw Normal View History

use std::borrow::Cow;
use crate::encoder::GlyphEncoder;
use crate::stages::{Config, Transform};
use crate::MAX_BLEND_STACK;
use piet::kurbo::{Affine, Insets, PathEl, Point, Rect, Shape};
use piet::{
Color, Error, FixedGradient, ImageFormat, InterpolationMode, IntoBrush, RenderContext,
StrokeStyle,
};
use piet_gpu_hal::BufWrite;
use piet_gpu_types::encoder::{Encode, Encoder};
use piet_gpu_types::scene::Element;
use crate::gradient::{LinearGradient, RampCache};
use crate::text::Font;
pub use crate::text::{PietGpuText, PietGpuTextLayout, PietGpuTextLayoutBuilder};
pub struct PietGpuImage;
pub struct PietGpuRenderContext {
encoder: Encoder,
elements: Vec<Element>,
// Will probably need direct accesss to hal Device to create images etc.
inner_text: PietGpuText,
stroke_width: f32,
// We're tallying these cpu-side for expedience, but will probably
// move this to some kind of readback from element processing.
/// The count of elements that make it through to coarse rasterization.
path_count: usize,
/// The count of path segment elements.
pathseg_count: usize,
/// The count of transform elements.
trans_count: usize,
cur_transform: Affine,
state_stack: Vec<State>,
clip_stack: Vec<ClipElement>,
ramp_cache: RampCache,
// Fields for new element processing pipeline below
// TODO: delete old encoder, rename
new_encoder: crate::encoder::Encoder,
}
#[derive(Clone)]
pub enum PietGpuBrush {
Solid(u32),
LinGradient(LinearGradient),
}
#[derive(Default)]
struct State {
/// The transform relative to the parent state.
rel_transform: Affine,
/// The transform at the parent state.
///
/// This invariant should hold: transform * rel_transform = cur_transform
transform: Affine,
n_clip: usize,
}
struct ClipElement {
/// Byte offset of BeginClip element in element vec, for bbox fixup.
save_point: usize,
bbox: Option<Rect>,
}
const TOLERANCE: f64 = 0.25;
impl PietGpuRenderContext {
pub fn new() -> PietGpuRenderContext {
let encoder = Encoder::new();
let elements = Vec::new();
let font = Font::new();
let inner_text = PietGpuText::new(font);
let stroke_width = -1.0;
PietGpuRenderContext {
encoder,
elements,
inner_text,
stroke_width,
path_count: 0,
pathseg_count: 0,
trans_count: 0,
cur_transform: Affine::default(),
state_stack: Vec::new(),
clip_stack: Vec::new(),
ramp_cache: RampCache::default(),
new_encoder: crate::encoder::Encoder::new(),
}
}
pub fn stage_config(&self) -> (Config, usize) {
self.new_encoder.stage_config()
}
/// Number of draw objects.
///
/// This is for the new element processing pipeline. It's not necessarily the
/// same as the number of paths (as in the old pipeline), but it might take a
/// while to sort that out.
pub fn n_drawobj(&self) -> usize {
self.new_encoder.n_drawobj()
}
/// Number of paths.
pub fn n_path(&self) -> u32 {
self.new_encoder.n_path()
}
pub fn n_pathseg(&self) -> u32 {
self.new_encoder.n_pathseg()
}
2021-12-07 10:59:32 +11:00
pub fn n_pathtag(&self) -> usize {
self.new_encoder.n_pathtag()
}
pub fn n_transform(&self) -> usize {
self.new_encoder.n_transform()
}
pub fn n_clip(&self) -> u32 {
self.new_encoder.n_clip()
}
pub fn write_scene(&self, buf: &mut BufWrite) {
self.new_encoder.write_scene(buf);
}
pub fn get_scene_buf(&mut self) -> &[u8] {
const ALIGN: usize = 128;
let padded_size = (self.elements.len() + (ALIGN - 1)) & ALIGN.wrapping_neg();
self.elements.resize(padded_size, Element::Nop());
self.elements.encode(&mut self.encoder);
self.encoder.buf()
}
pub fn path_count(&self) -> usize {
self.path_count
}
pub fn pathseg_count(&self) -> usize {
self.pathseg_count
}
pub fn trans_count(&self) -> usize {
self.trans_count
}
pub fn get_ramp_data(&self) -> Vec<u32> {
self.ramp_cache.get_ramp_data()
}
}
impl RenderContext for PietGpuRenderContext {
type Brush = PietGpuBrush;
type Image = PietGpuImage;
type Text = PietGpuText;
type TextLayout = PietGpuTextLayout;
fn status(&mut self) -> Result<(), Error> {
Ok(())
}
fn solid_brush(&mut self, color: Color) -> Self::Brush {
// kernel4 expects colors encoded in alpha-premultiplied sRGB:
//
// [α,sRGB(α⋅R),sRGB(α⋅G),sRGB(α⋅B)]
//
// See also http://ssp.impulsetrain.com/gamma-premult.html.
let (r, g, b, a) = color.as_rgba();
let premul = Color::rgba(
to_srgb(from_srgb(r) * a),
to_srgb(from_srgb(g) * a),
to_srgb(from_srgb(b) * a),
a,
);
PietGpuBrush::Solid(premul.as_rgba_u32())
}
fn gradient(&mut self, gradient: impl Into<FixedGradient>) -> Result<Self::Brush, Error> {
match gradient.into() {
FixedGradient::Linear(lin) => {
let lin = self.ramp_cache.add_linear_gradient(&lin);
Ok(PietGpuBrush::LinGradient(lin))
}
_ => todo!("don't do radial gradients yet"),
}
}
fn clear(&mut self, _color: Color) {}
fn stroke(&mut self, shape: impl Shape, brush: &impl IntoBrush<Self>, width: f64) {
self.encode_linewidth(width.abs() as f32);
let brush = brush.make_brush(self, || shape.bounding_box()).into_owned();
// Note: the bbox contribution of stroke becomes more complicated with miter joins.
self.accumulate_bbox(|| shape.bounding_box() + Insets::uniform(width * 0.5));
let path = shape.path_elements(TOLERANCE);
self.encode_path(path, false);
self.encode_brush(&brush);
}
fn stroke_styled(
&mut self,
_shape: impl Shape,
_brush: &impl IntoBrush<Self>,
_width: f64,
_style: &StrokeStyle,
) {
}
fn fill(&mut self, shape: impl Shape, brush: &impl IntoBrush<Self>) {
let brush = brush.make_brush(self, || shape.bounding_box()).into_owned();
// Note: we might get a good speedup from using an approximate bounding box.
// Perhaps that should be added to kurbo.
self.accumulate_bbox(|| shape.bounding_box());
let path = shape.path_elements(TOLERANCE);
self.encode_linewidth(-1.0);
self.encode_path(path, true);
self.encode_brush(&brush);
}
fn fill_even_odd(&mut self, _shape: impl Shape, _brush: &impl IntoBrush<Self>) {}
fn clip(&mut self, shape: impl Shape) {
self.encode_linewidth(-1.0);
let path = shape.path_elements(TOLERANCE);
self.encode_path(path, true);
let save_point = self.new_encoder.begin_clip();
if self.clip_stack.len() >= MAX_BLEND_STACK {
panic!("Maximum clip/blend stack size {} exceeded", MAX_BLEND_STACK);
}
self.clip_stack.push(ClipElement {
bbox: None,
save_point,
});
if let Some(tos) = self.state_stack.last_mut() {
tos.n_clip += 1;
}
}
fn text(&mut self) -> &mut Self::Text {
&mut self.inner_text
}
fn draw_text(&mut self, layout: &Self::TextLayout, pos: impl Into<Point>) {
self.encode_linewidth(-1.0);
layout.draw_text(self, pos.into());
}
fn save(&mut self) -> Result<(), Error> {
self.state_stack.push(State {
rel_transform: Affine::default(),
transform: self.cur_transform,
n_clip: 0,
});
Ok(())
}
fn restore(&mut self) -> Result<(), Error> {
if let Some(state) = self.state_stack.pop() {
if state.rel_transform != Affine::default() {
let a_inv = state.rel_transform.inverse();
self.encode_transform(Transform::from_kurbo(a_inv));
}
self.cur_transform = state.transform;
for _ in 0..state.n_clip {
self.pop_clip();
}
Ok(())
} else {
Err(Error::StackUnbalance)
}
}
fn finish(&mut self) -> Result<(), Error> {
for _ in 0..self.clip_stack.len() {
self.pop_clip();
}
Ok(())
}
fn transform(&mut self, transform: Affine) {
self.encode_transform(Transform::from_kurbo(transform));
if let Some(tos) = self.state_stack.last_mut() {
tos.rel_transform *= transform;
}
self.cur_transform *= transform;
}
fn make_image(
&mut self,
_width: usize,
_height: usize,
_buf: &[u8],
_format: ImageFormat,
) -> Result<Self::Image, Error> {
Ok(PietGpuImage)
}
fn draw_image(
&mut self,
_image: &Self::Image,
_rect: impl Into<Rect>,
_interp: InterpolationMode,
) {
}
fn draw_image_area(
&mut self,
_image: &Self::Image,
_src_rect: impl Into<Rect>,
_dst_rect: impl Into<Rect>,
_interp: InterpolationMode,
) {
}
fn blurred_rect(&mut self, _rect: Rect, _blur_radius: f64, _brush: &impl IntoBrush<Self>) {}
fn current_transform(&self) -> Affine {
self.cur_transform
}
fn with_save(&mut self, f: impl FnOnce(&mut Self) -> Result<(), Error>) -> Result<(), Error> {
self.save()?;
// Always try to restore the stack, even if `f` errored.
f(self).and(self.restore())
}
}
impl PietGpuRenderContext {
fn encode_path(&mut self, path: impl Iterator<Item = PathEl>, is_fill: bool) {
2021-03-17 02:51:13 +11:00
if is_fill {
self.encode_path_inner(
path.flat_map(|el| {
match el {
PathEl::MoveTo(..) => Some(PathEl::ClosePath),
_ => None,
2021-03-17 02:51:13 +11:00
}
.into_iter()
.chain(Some(el))
})
.chain(Some(PathEl::ClosePath)),
)
2021-03-17 02:51:13 +11:00
} else {
self.encode_path_inner(path)
2021-03-17 02:51:13 +11:00
}
}
fn encode_path_inner(&mut self, path: impl Iterator<Item = PathEl>) {
let mut pe = self.new_encoder.path_encoder();
for el in path {
match el {
PathEl::MoveTo(p) => {
let p = to_f32_2(p);
pe.move_to(p[0], p[1]);
}
PathEl::LineTo(p) => {
let p = to_f32_2(p);
pe.line_to(p[0], p[1]);
}
PathEl::QuadTo(p1, p2) => {
let p1 = to_f32_2(p1);
let p2 = to_f32_2(p2);
pe.quad_to(p1[0], p1[1], p2[0], p2[1]);
}
PathEl::CurveTo(p1, p2, p3) => {
let p1 = to_f32_2(p1);
let p2 = to_f32_2(p2);
let p3 = to_f32_2(p3);
pe.cubic_to(p1[0], p1[1], p2[0], p2[1], p3[0], p3[1]);
}
PathEl::ClosePath => pe.close_path(),
}
}
pe.path();
let n_pathseg = pe.n_pathseg();
self.new_encoder.finish_path(n_pathseg);
}
fn pop_clip(&mut self) {
let tos = self.clip_stack.pop().unwrap();
let bbox = tos.bbox.unwrap_or_default();
let bbox_f32_4 = rect_to_f32_4(bbox);
self.new_encoder.end_clip(bbox_f32_4, tos.save_point);
if let Some(bbox) = tos.bbox {
self.union_bbox(bbox);
}
}
/// Accumulate a bbox.
///
/// The bbox is given lazily as a closure, relative to the current transform.
/// It's lazy because we don't need to compute it unless we're inside a clip.
fn accumulate_bbox(&mut self, f: impl FnOnce() -> Rect) {
if !self.clip_stack.is_empty() {
let bbox = f();
let bbox = self.cur_transform.transform_rect_bbox(bbox);
self.union_bbox(bbox);
}
}
/// Accumulate an absolute bbox.
///
/// The bbox is given already transformed into surface coordinates.
fn union_bbox(&mut self, bbox: Rect) {
if let Some(tos) = self.clip_stack.last_mut() {
tos.bbox = if let Some(old_bbox) = tos.bbox {
Some(old_bbox.union(bbox))
} else {
Some(bbox)
};
}
}
pub(crate) fn encode_glyph(&mut self, glyph: &GlyphEncoder) {
self.new_encoder.encode_glyph(glyph);
}
pub(crate) fn fill_glyph(&mut self, rgba_color: u32) {
self.new_encoder.fill_color(rgba_color);
}
pub(crate) fn encode_transform(&mut self, transform: Transform) {
self.new_encoder.transform(transform);
}
fn encode_linewidth(&mut self, linewidth: f32) {
if self.stroke_width != linewidth {
self.new_encoder.linewidth(linewidth);
self.stroke_width = linewidth;
}
}
fn encode_brush(&mut self, brush: &PietGpuBrush) {
match brush {
PietGpuBrush::Solid(rgba_color) => {
self.new_encoder.fill_color(*rgba_color);
}
PietGpuBrush::LinGradient(lin) => {
self.new_encoder
.fill_lin_gradient(lin.ramp_id, lin.start, lin.end);
}
}
}
}
impl IntoBrush<PietGpuRenderContext> for PietGpuBrush {
fn make_brush<'b>(
&'b self,
_piet: &mut PietGpuRenderContext,
_bbox: impl FnOnce() -> Rect,
) -> std::borrow::Cow<'b, PietGpuBrush> {
Cow::Borrowed(self)
}
}
pub(crate) fn to_f32_2(point: Point) -> [f32; 2] {
[point.x as f32, point.y as f32]
}
fn rect_to_f32_4(rect: Rect) -> [f32; 4] {
[
rect.x0 as f32,
rect.y0 as f32,
rect.x1 as f32,
rect.y1 as f32,
]
}
fn to_srgb(f: f64) -> f64 {
if f <= 0.0031308 {
f * 12.92
} else {
let a = 0.055;
(1. + a) * f64::powf(f, f64::recip(2.4)) - a
}
}
fn from_srgb(f: f64) -> f64 {
if f <= 0.04045 {
f / 12.92
} else {
let a = 0.055;
f64::powf((f + a) * f64::recip(1. + a), 2.4)
}
}