Path segments are unsorted, but other elements are using the same
sort-middle approach as before.
This is a checkpoint. At this point, there are unoptimized versions
of tile init and coarse path raster, but it isn't wired up into a
working pipeline. Also observing about a 3x performance regression in
element processing, which needs to be investigated.
Trying to fit it into the fancy monad doesn't really work, so use a
more straightforward approach to compute it from the aggregate.
Also add yEdge logic (basically copying piet-metal). With a fix to
ELEMENT_BINNING_RATIO (which I had simply gotten wrong), the example
renders almost correctly, with small bounding box artifacts.
Write the right_edge to the binning output.
More work on encoding the fill/stroke distinction and plumbing that
through the pipeline. This is a bit unsatisfying because of the code
duplication; having an extra fill/stroke bool might be better, but I
want to avoid making the structs bigger (this could be solved by
better packing in the struct encoding).
Fills are plumbed through to the last stage. Backdrop is WIP.
This should get the "right_edge" value for each segment plumbed through
to the binning phase. It also needs to be plumbed to coarse raster and
wired up there.
Also considering WIP because none of this logic has been tested yet.
As of this point, it mostly renders stroke outlines for tiger. Some
dropouts are because the scan in the elements pass doesn't do lookback
yet, others are probably a bug.
This version seems to work but the allocation of segments has low
utilization. Probably best to allocate in chunks rather than try to
make them contiguous.
This just adds the first step of polyline stroking, which is adding it
to the scene. Also just a bit of cleaning up of dimensions into one
header file.
Populates the piet-gpu subdir, with an extremely simple renderer. The
main program saves the image to a PNG.
Contains a few fixes (I was confused about the need for multiple
bindings, as opposed to multiple descriptors within a binding).