winit-sonoma-fix/src/platform/linux/x11/window.rs

977 lines
37 KiB
Rust
Raw Normal View History

2017-01-29 01:00:17 +11:00
use {WindowEvent as Event, MouseCursor};
use CreationError;
use CreationError::OsError;
use libc;
use std::borrow::Borrow;
use std::{mem, ptr, cmp};
use std::cell::Cell;
use std::sync::atomic::AtomicBool;
use std::collections::VecDeque;
use std::sync::{Arc, Mutex};
use std::os::raw::c_long;
use std::thread;
use std::time::Duration;
use CursorState;
use WindowAttributes;
use platform::PlatformSpecificWindowBuilderAttributes;
2015-09-24 17:11:59 +10:00
use platform::MonitorId as PlatformMonitorId;
use super::input::XInputEventHandler;
use super::{ffi};
2015-09-24 17:11:59 +10:00
use super::{MonitorId, XConnection};
// XOpenIM doesn't seem to be thread-safe
lazy_static! { // TODO: use a static mutex when that's possible, and put me back in my function
static ref GLOBAL_XOPENIM_LOCK: Mutex<()> = Mutex::new(());
}
// TODO: remove me
fn with_c_str<F, T>(s: &str, f: F) -> T where F: FnOnce(*const libc::c_char) -> T {
use std::ffi::CString;
let c_str = CString::new(s.as_bytes().to_vec()).unwrap();
f(c_str.as_ptr())
}
struct WindowProxyData {
display: Arc<XConnection>,
window: ffi::Window,
}
unsafe impl Send for WindowProxyData {}
pub struct XWindow {
display: Arc<XConnection>,
window: ffi::Window,
is_fullscreen: bool,
screen_id: libc::c_int,
xf86_desk_mode: Option<ffi::XF86VidModeModeInfo>,
ic: ffi::XIC,
im: ffi::XIM,
window_proxy_data: Arc<Mutex<Option<WindowProxyData>>>,
}
unsafe impl Send for XWindow {}
unsafe impl Sync for XWindow {}
unsafe impl Send for Window {}
unsafe impl Sync for Window {}
impl Drop for XWindow {
fn drop(&mut self) {
unsafe {
// Clear out the window proxy data arc, so that any window proxy objects
// are no longer able to send messages to this window.
*self.window_proxy_data.lock().unwrap() = None;
let _lock = GLOBAL_XOPENIM_LOCK.lock().unwrap();
if self.is_fullscreen {
if let Some(mut xf86_desk_mode) = self.xf86_desk_mode {
(self.display.xf86vmode.XF86VidModeSwitchToMode)(self.display.display, self.screen_id, &mut xf86_desk_mode);
}
(self.display.xf86vmode.XF86VidModeSetViewPort)(self.display.display, self.screen_id, 0, 0);
}
(self.display.xlib.XDestroyIC)(self.ic);
(self.display.xlib.XCloseIM)(self.im);
(self.display.xlib.XDestroyWindow)(self.display.display, self.window);
}
}
}
#[derive(Clone)]
pub struct WindowProxy {
data: Arc<Mutex<Option<WindowProxyData>>>,
}
impl WindowProxy {
pub fn wakeup_event_loop(&self) {
let window_proxy_data = self.data.lock().unwrap();
if let Some(ref data) = *window_proxy_data {
let mut xev = ffi::XClientMessageEvent {
type_: ffi::ClientMessage,
window: data.window,
format: 32,
message_type: 0,
serial: 0,
send_event: 0,
display: data.display.display,
data: unsafe { mem::zeroed() },
};
unsafe {
(data.display.xlib.XSendEvent)(data.display.display, data.window, 0, 0, mem::transmute(&mut xev));
(data.display.xlib.XFlush)(data.display.display);
2015-12-24 20:57:08 +11:00
data.display.check_errors().expect("Failed to call XSendEvent after wakeup");
}
}
}
}
// XEvents of type GenericEvent store their actual data
// in an XGenericEventCookie data structure. This is a wrapper
// to extract the cookie from a GenericEvent XEvent and release
// the cookie data once it has been processed
struct GenericEventCookie<'a> {
display: &'a XConnection,
cookie: ffi::XGenericEventCookie
}
impl<'a> GenericEventCookie<'a> {
fn from_event<'b>(display: &'b XConnection, event: ffi::XEvent) -> Option<GenericEventCookie<'b>> {
unsafe {
let mut cookie: ffi::XGenericEventCookie = From::from(event);
if (display.xlib.XGetEventData)(display.display, &mut cookie) == ffi::True {
Some(GenericEventCookie{display: display, cookie: cookie})
} else {
None
}
}
}
}
impl<'a> Drop for GenericEventCookie<'a> {
fn drop(&mut self) {
unsafe {
let xlib = &self.display.xlib;
(xlib.XFreeEventData)(self.display.display, &mut self.cookie);
}
}
}
pub struct PollEventsIterator<'a> {
window: &'a Window
}
impl<'a> Iterator for PollEventsIterator<'a> {
type Item = Event;
fn next(&mut self) -> Option<Event> {
let xlib = &self.window.x.display.xlib;
loop {
if let Some(ev) = self.window.pending_events.lock().unwrap().pop_front() {
return Some(ev);
}
let mut xev = unsafe { mem::uninitialized() };
// Get the next X11 event. XNextEvent will block if there's no
// events available; checking the count first ensures an event will
// be returned without blocking.
//
// Functions like XCheckTypedEvent can prevent events from being
// popped if they are of the wrong type in which case winit would
// enter a busy loop. To avoid that, XNextEvent is used to pop
// events off the queue since it will accept any event type.
unsafe {
let count = (xlib.XPending)(self.window.x.display.display);
if count == 0 {
return None;
}
let res = (xlib.XNextEvent)(self.window.x.display.display, &mut xev);
// Can res ever be none zero if count is > 0?
assert!(res == 0);
};
match xev.get_type() {
ffi::MappingNotify => {
unsafe { (xlib.XRefreshKeyboardMapping)(mem::transmute(&xev)); }
2015-12-24 20:57:08 +11:00
self.window.x.display.check_errors().expect("Failed to call XRefreshKeyboardMapping");
},
ffi::ClientMessage => {
2017-01-29 01:00:17 +11:00
use events::WindowEvent::{Closed, Awakened};
use std::sync::atomic::Ordering::Relaxed;
let client_msg: &ffi::XClientMessageEvent = unsafe { mem::transmute(&xev) };
if client_msg.data.get_long(0) == self.window.wm_delete_window as libc::c_long {
self.window.is_closed.store(true, Relaxed);
return Some(Closed);
} else {
return Some(Awakened);
}
},
ffi::ConfigureNotify => {
2017-01-29 01:00:17 +11:00
use events::WindowEvent::Resized;
let cfg_event: &ffi::XConfigureEvent = unsafe { mem::transmute(&xev) };
let (current_width, current_height) = self.window.current_size.get();
if current_width != cfg_event.width || current_height != cfg_event.height {
self.window.current_size.set((cfg_event.width, cfg_event.height));
return Some(Resized(cfg_event.width as u32, cfg_event.height as u32));
}
},
ffi::Expose => {
2017-01-29 01:00:17 +11:00
use events::WindowEvent::Refresh;
return Some(Refresh);
},
ffi::KeyPress | ffi::KeyRelease => {
let mut event: &mut ffi::XKeyEvent = unsafe { mem::transmute(&mut xev) };
let events = self.window.input_handler.lock().unwrap().translate_key_event(&mut event);
for event in events {
self.window.pending_events.lock().unwrap().push_back(event);
}
},
ffi::GenericEvent => {
if let Some(cookie) = GenericEventCookie::from_event(self.window.x.display.borrow(), xev) {
match cookie.cookie.evtype {
ffi::XI_DeviceChanged...ffi::XI_LASTEVENT => {
match self.window.input_handler.lock() {
Ok(mut handler) => {
match handler.translate_event(&cookie.cookie) {
Some(event) => self.window.pending_events.lock().unwrap().push_back(event),
None => {}
}
},
Err(_) => {}
}
},
_ => {}
}
}
}
_ => {}
};
}
}
}
pub struct WaitEventsIterator<'a> {
window: &'a Window,
}
impl<'a> Iterator for WaitEventsIterator<'a> {
type Item = Event;
fn next(&mut self) -> Option<Event> {
2015-06-16 21:48:08 +10:00
use std::sync::atomic::Ordering::Relaxed;
use std::mem;
2015-06-16 21:48:08 +10:00
while !self.window.is_closed.load(Relaxed) {
if let Some(ev) = self.window.pending_events.lock().unwrap().pop_front() {
return Some(ev);
}
// this will block until an event arrives, but doesn't remove
// it from the queue
let mut xev = unsafe { mem::uninitialized() };
unsafe { (self.window.x.display.xlib.XPeekEvent)(self.window.x.display.display, &mut xev) };
2015-12-24 20:57:08 +11:00
self.window.x.display.check_errors().expect("Failed to call XPeekEvent");
// calling poll_events()
if let Some(ev) = self.window.poll_events().next() {
return Some(ev);
}
}
None
}
}
pub struct Window {
pub x: Arc<XWindow>,
is_closed: AtomicBool,
wm_delete_window: ffi::Atom,
current_size: Cell<(libc::c_int, libc::c_int)>,
/// Events that have been retreived with XLib but not dispatched with iterators yet
pending_events: Mutex<VecDeque<Event>>,
cursor_state: Mutex<CursorState>,
input_handler: Mutex<XInputEventHandler>
}
impl Window {
pub fn new(display: &Arc<XConnection>, window_attrs: &WindowAttributes,
pl_attribs: &PlatformSpecificWindowBuilderAttributes)
-> Result<Window, CreationError>
{
let dimensions = {
// x11 only applies constraints when the window is actively resized
// by the user, so we have to manually apply the initial constraints
let mut dimensions = window_attrs.dimensions.unwrap_or((800, 600));
if let Some(max) = window_attrs.max_dimensions {
dimensions.0 = cmp::min(dimensions.0, max.0);
dimensions.1 = cmp::min(dimensions.1, max.1);
}
if let Some(min) = window_attrs.min_dimensions {
dimensions.0 = cmp::max(dimensions.0, min.0);
dimensions.1 = cmp::max(dimensions.1, min.1);
}
dimensions
};
let screen_id = match pl_attribs.screen_id {
Some(id) => id,
None => match window_attrs.monitor {
Some(PlatformMonitorId::X(MonitorId(_, monitor))) => monitor as i32,
_ => unsafe { (display.xlib.XDefaultScreen)(display.display) },
}
};
2015-06-27 00:47:39 +10:00
// finding the mode to switch to if necessary
let (mode_to_switch_to, xf86_desk_mode) = unsafe {
let mut mode_num: libc::c_int = mem::uninitialized();
let mut modes: *mut *mut ffi::XF86VidModeModeInfo = mem::uninitialized();
if (display.xf86vmode.XF86VidModeGetAllModeLines)(display.display, screen_id, &mut mode_num, &mut modes) == 0 {
(None, None)
} else {
let xf86_desk_mode: ffi::XF86VidModeModeInfo = ptr::read(*modes.offset(0));
let mode_to_switch_to = if window_attrs.monitor.is_some() {
let matching_mode = (0 .. mode_num).map(|i| {
2015-06-27 00:47:39 +10:00
let m: ffi::XF86VidModeModeInfo = ptr::read(*modes.offset(i as isize) as *const _); m
}).find(|m| m.hdisplay == dimensions.0 as u16 && m.vdisplay == dimensions.1 as u16);
if let Some(matching_mode) = matching_mode {
Some(matching_mode)
} else {
let m = (0 .. mode_num).map(|i| {
let m: ffi::XF86VidModeModeInfo = ptr::read(*modes.offset(i as isize) as *const _); m
}).find(|m| m.hdisplay >= dimensions.0 as u16 && m.vdisplay >= dimensions.1 as u16);
2016-03-22 05:42:54 +11:00
match m {
Some(m) => Some(m),
None => return Err(OsError(format!("Could not find a suitable graphics mode")))
}
2015-06-27 00:47:39 +10:00
}
} else {
None
};
(display.xlib.XFree)(modes as *mut _);
(mode_to_switch_to, Some(xf86_desk_mode))
}
};
// getting the root window
let root = unsafe { (display.xlib.XDefaultRootWindow)(display.display) };
2015-12-24 20:57:08 +11:00
display.check_errors().expect("Failed to get root window");
// creating
let mut set_win_attr = {
let mut swa: ffi::XSetWindowAttributes = unsafe { mem::zeroed() };
swa.colormap = if let Some(vi) = pl_attribs.visual_infos {
unsafe {
let visual = vi.visual;
(display.xlib.XCreateColormap)(display.display, root, visual, ffi::AllocNone)
}
} else { 0 };
swa.event_mask = ffi::ExposureMask | ffi::StructureNotifyMask |
ffi::VisibilityChangeMask | ffi::KeyPressMask | ffi::PointerMotionMask |
ffi::KeyReleaseMask | ffi::ButtonPressMask |
ffi::ButtonReleaseMask | ffi::KeymapStateMask;
swa.border_pixel = 0;
if window_attrs.transparent {
2015-06-15 07:20:32 +10:00
swa.background_pixel = 0;
}
swa.override_redirect = 0;
swa
};
let mut window_attributes = ffi::CWBorderPixel | ffi::CWColormap | ffi::CWEventMask;
2015-06-15 07:20:32 +10:00
if window_attrs.transparent {
2015-06-15 07:20:32 +10:00
window_attributes |= ffi::CWBackPixel;
}
// finally creating the window
let window = unsafe {
let win = (display.xlib.XCreateWindow)(display.display, root, 0, 0, dimensions.0 as libc::c_uint,
dimensions.1 as libc::c_uint, 0,
match pl_attribs.visual_infos {
Some(vi) => vi.depth,
None => ffi::CopyFromParent
},
ffi::InputOutput as libc::c_uint,
match pl_attribs.visual_infos {
Some(vi) => vi.visual,
None => ffi::CopyFromParent as *mut _
},
window_attributes,
&mut set_win_attr);
2015-12-24 20:57:08 +11:00
display.check_errors().expect("Failed to call XCreateWindow");
win
};
// set visibility
if window_attrs.visible {
unsafe {
(display.xlib.XMapRaised)(display.display, window);
(display.xlib.XFlush)(display.display);
}
2015-12-24 20:57:08 +11:00
display.check_errors().expect("Failed to set window visibility");
}
// creating window, step 2
let wm_delete_window = unsafe {
let mut wm_delete_window = with_c_str("WM_DELETE_WINDOW", |delete_window|
(display.xlib.XInternAtom)(display.display, delete_window, 0)
);
2015-12-24 20:57:08 +11:00
display.check_errors().expect("Failed to call XInternAtom");
(display.xlib.XSetWMProtocols)(display.display, window, &mut wm_delete_window, 1);
2015-12-24 20:57:08 +11:00
display.check_errors().expect("Failed to call XSetWMProtocols");
(display.xlib.XFlush)(display.display);
2015-12-24 20:57:08 +11:00
display.check_errors().expect("Failed to call XFlush");
wm_delete_window
};
// creating IM
let im = unsafe {
let _lock = GLOBAL_XOPENIM_LOCK.lock().unwrap();
let im = (display.xlib.XOpenIM)(display.display, ptr::null_mut(), ptr::null_mut(), ptr::null_mut());
if im.is_null() {
return Err(OsError(format!("XOpenIM failed")));
}
im
};
// creating input context
let ic = unsafe {
let ic = with_c_str("inputStyle", |input_style|
with_c_str("clientWindow", |client_window|
(display.xlib.XCreateIC)(
im, input_style,
ffi::XIMPreeditNothing | ffi::XIMStatusNothing, client_window,
window, ptr::null::<()>()
)
)
);
if ic.is_null() {
return Err(OsError(format!("XCreateIC failed")));
}
(display.xlib.XSetICFocus)(ic);
2015-12-24 20:57:08 +11:00
display.check_errors().expect("Failed to call XSetICFocus");
ic
};
// Attempt to make keyboard input repeat detectable
unsafe {
let mut supported_ptr = ffi::False;
(display.xlib.XkbSetDetectableAutoRepeat)(display.display, ffi::True, &mut supported_ptr);
if supported_ptr == ffi::False {
return Err(OsError(format!("XkbSetDetectableAutoRepeat failed")));
}
}
// Set ICCCM WM_CLASS property based on initial window title
unsafe {
with_c_str(&*window_attrs.title, |c_name| {
let hint = (display.xlib.XAllocClassHint)();
(*hint).res_name = c_name as *mut libc::c_char;
(*hint).res_class = c_name as *mut libc::c_char;
(display.xlib.XSetClassHint)(display.display, window, hint);
2015-12-24 20:57:08 +11:00
display.check_errors().expect("Failed to call XSetClassHint");
(display.xlib.XFree)(hint as *mut _);
});
}
let is_fullscreen = window_attrs.monitor.is_some();
2015-07-19 21:53:40 +10:00
2015-10-26 18:40:37 +11:00
if is_fullscreen {
let state_atom = unsafe {
with_c_str("_NET_WM_STATE", |state|
(display.xlib.XInternAtom)(display.display, state, 0)
)
};
2015-12-24 20:57:08 +11:00
display.check_errors().expect("Failed to call XInternAtom");
2015-10-26 20:11:59 +11:00
let fullscreen_atom = unsafe {
2015-10-26 18:40:37 +11:00
with_c_str("_NET_WM_STATE_FULLSCREEN", |state_fullscreen|
(display.xlib.XInternAtom)(display.display, state_fullscreen, 0)
)
};
2015-12-24 20:57:08 +11:00
display.check_errors().expect("Failed to call XInternAtom");
2015-10-26 18:40:37 +11:00
let client_message_event = ffi::XClientMessageEvent {
type_: ffi::ClientMessage,
serial: 0,
2015-10-26 20:11:59 +11:00
send_event: 1, // true because we are sending this through `XSendEvent`
2015-10-26 18:40:37 +11:00
display: display.display,
window: window,
2015-10-26 20:11:59 +11:00
message_type: state_atom, // the _NET_WM_STATE atom is sent to change the state of a window
format: 32, // view `data` as `c_long`s
2015-10-26 18:40:37 +11:00
data: {
2015-10-27 18:22:13 +11:00
let mut data = ffi::ClientMessageData::new();
2015-10-26 20:11:59 +11:00
// This first `long` is the action; `1` means add/set following property.
2015-10-26 18:40:37 +11:00
data.set_long(0, 1);
2015-10-26 20:11:59 +11:00
// This second `long` is the property to set (fullscreen)
data.set_long(1, fullscreen_atom as c_long);
2015-10-26 18:40:37 +11:00
data
}
};
let mut x_event = ffi::XEvent::from(client_message_event);
unsafe {
(display.xlib.XSendEvent)(
display.display,
root,
0,
ffi::SubstructureRedirectMask | ffi::SubstructureNotifyMask,
&mut x_event as *mut _
);
2015-12-24 20:57:08 +11:00
display.check_errors().expect("Failed to call XSendEvent");
2015-10-26 18:40:37 +11:00
}
2015-10-27 18:07:37 +11:00
if let Some(mut mode_to_switch_to) = mode_to_switch_to {
unsafe {
(display.xf86vmode.XF86VidModeSwitchToMode)(
display.display,
screen_id,
&mut mode_to_switch_to
);
2015-12-24 20:57:08 +11:00
display.check_errors().expect("Failed to call XF86VidModeSwitchToMode");
2015-10-27 18:07:37 +11:00
}
}
else {
println!("[glutin] Unexpected state: `mode` is None creating fullscreen window");
}
unsafe {
(display.xf86vmode.XF86VidModeSetViewPort)(display.display, screen_id, 0, 0);
2015-12-24 20:57:08 +11:00
display.check_errors().expect("Failed to call XF86VidModeSetViewPort");
2015-10-27 18:07:37 +11:00
}
} else {
// set size hints
let mut size_hints: ffi::XSizeHints = unsafe { mem::zeroed() };
size_hints.flags = ffi::PSize;
size_hints.width = dimensions.0 as i32;
size_hints.height = dimensions.1 as i32;
if let Some(dimensions) = window_attrs.min_dimensions {
size_hints.flags |= ffi::PMinSize;
size_hints.min_width = dimensions.0 as i32;
size_hints.min_height = dimensions.1 as i32;
}
if let Some(dimensions) = window_attrs.max_dimensions {
size_hints.flags |= ffi::PMaxSize;
size_hints.max_width = dimensions.0 as i32;
size_hints.max_height = dimensions.1 as i32;
}
unsafe {
(display.xlib.XSetNormalHints)(display.display, window, &mut size_hints);
display.check_errors().expect("Failed to call XSetNormalHints");
}
2015-10-26 18:40:37 +11:00
}
// creating the window object
let window_proxy_data = WindowProxyData {
display: display.clone(),
window: window,
};
let window_proxy_data = Arc::new(Mutex::new(Some(window_proxy_data)));
let window = Window {
x: Arc::new(XWindow {
display: display.clone(),
window: window,
im: im,
ic: ic,
screen_id: screen_id,
is_fullscreen: is_fullscreen,
xf86_desk_mode: xf86_desk_mode,
window_proxy_data: window_proxy_data,
}),
is_closed: AtomicBool::new(false),
wm_delete_window: wm_delete_window,
current_size: Cell::new((0, 0)),
pending_events: Mutex::new(VecDeque::new()),
cursor_state: Mutex::new(CursorState::Normal),
input_handler: Mutex::new(XInputEventHandler::new(display, window, ic, window_attrs))
};
window.set_title(&window_attrs.title);
if window_attrs.visible {
unsafe {
let ref x_window: &XWindow = window.x.borrow();
// XSetInputFocus generates an error if the window is not visible,
// therefore we wait until it's the case.
loop {
let mut window_attributes = mem::uninitialized();
(display.xlib.XGetWindowAttributes)(display.display, x_window.window, &mut window_attributes);
display.check_errors().expect("Failed to call XGetWindowAttributes");
if window_attributes.map_state == ffi::IsViewable {
(display.xlib.XSetInputFocus)(
display.display,
x_window.window,
ffi::RevertToParent,
ffi::CurrentTime
);
display.check_errors().expect("Failed to call XSetInputFocus");
break;
}
// Wait about a frame to avoid too-busy waiting
thread::sleep(Duration::from_millis(16));
}
}
}
// returning
Ok(window)
}
pub fn set_title(&self, title: &str) {
let wm_name = unsafe {
(self.x.display.xlib.XInternAtom)(self.x.display.display, b"_NET_WM_NAME\0".as_ptr() as *const _, 0)
};
self.x.display.check_errors().expect("Failed to call XInternAtom");
let wm_utf8_string = unsafe {
(self.x.display.xlib.XInternAtom)(self.x.display.display, b"UTF8_STRING\0".as_ptr() as *const _, 0)
};
self.x.display.check_errors().expect("Failed to call XInternAtom");
with_c_str(title, |c_title| unsafe {
(self.x.display.xlib.XStoreName)(self.x.display.display, self.x.window, c_title);
let len = title.as_bytes().len();
(self.x.display.xlib.XChangeProperty)(self.x.display.display, self.x.window,
wm_name, wm_utf8_string, 8, ffi::PropModeReplace,
c_title as *const u8, len as libc::c_int);
(self.x.display.xlib.XFlush)(self.x.display.display);
2015-12-24 20:57:08 +11:00
});
self.x.display.check_errors().expect("Failed to set window title");
2015-12-24 20:57:08 +11:00
}
pub fn show(&self) {
unsafe {
(self.x.display.xlib.XMapRaised)(self.x.display.display, self.x.window);
(self.x.display.xlib.XFlush)(self.x.display.display);
2015-12-24 20:57:08 +11:00
self.x.display.check_errors().expect("Failed to call XMapRaised");
}
}
pub fn hide(&self) {
unsafe {
(self.x.display.xlib.XUnmapWindow)(self.x.display.display, self.x.window);
(self.x.display.xlib.XFlush)(self.x.display.display);
2015-12-24 20:57:08 +11:00
self.x.display.check_errors().expect("Failed to call XUnmapWindow");
}
}
fn get_geometry(&self) -> Option<(i32, i32, u32, u32, u32)> {
unsafe {
use std::mem;
let mut root: ffi::Window = mem::uninitialized();
let mut x: libc::c_int = mem::uninitialized();
let mut y: libc::c_int = mem::uninitialized();
let mut width: libc::c_uint = mem::uninitialized();
let mut height: libc::c_uint = mem::uninitialized();
let mut border: libc::c_uint = mem::uninitialized();
let mut depth: libc::c_uint = mem::uninitialized();
if (self.x.display.xlib.XGetGeometry)(self.x.display.display, self.x.window,
&mut root, &mut x, &mut y, &mut width, &mut height,
&mut border, &mut depth) == 0
{
return None;
}
Some((x as i32, y as i32, width as u32, height as u32, border as u32))
}
}
2015-09-21 22:42:05 +10:00
#[inline]
pub fn get_position(&self) -> Option<(i32, i32)> {
self.get_geometry().map(|(x, y, _, _, _)| (x, y))
}
pub fn set_position(&self, x: i32, y: i32) {
unsafe { (self.x.display.xlib.XMoveWindow)(self.x.display.display, self.x.window, x as libc::c_int, y as libc::c_int); }
2015-12-24 20:57:08 +11:00
self.x.display.check_errors().expect("Failed to call XMoveWindow");
}
2015-09-21 22:42:05 +10:00
#[inline]
pub fn get_inner_size(&self) -> Option<(u32, u32)> {
self.get_geometry().map(|(_, _, w, h, _)| (w, h))
}
2015-09-21 22:42:05 +10:00
#[inline]
pub fn get_outer_size(&self) -> Option<(u32, u32)> {
self.get_geometry().map(|(_, _, w, h, b)| (w + b, h + b)) // TODO: is this really outside?
}
2015-09-21 22:42:05 +10:00
#[inline]
pub fn set_inner_size(&self, x: u32, y: u32) {
unsafe { (self.x.display.xlib.XResizeWindow)(self.x.display.display, self.x.window, x as libc::c_uint, y as libc::c_uint); }
2015-12-24 20:57:08 +11:00
self.x.display.check_errors().expect("Failed to call XResizeWindow");
}
2015-09-21 22:42:05 +10:00
#[inline]
pub fn create_window_proxy(&self) -> WindowProxy {
WindowProxy {
data: self.x.window_proxy_data.clone()
}
}
2015-09-21 22:42:05 +10:00
#[inline]
pub fn poll_events(&self) -> PollEventsIterator {
PollEventsIterator {
window: self
}
}
2015-09-21 22:42:05 +10:00
#[inline]
pub fn wait_events(&self) -> WaitEventsIterator {
WaitEventsIterator {
window: self
}
}
#[inline]
pub fn get_xlib_display(&self) -> *mut libc::c_void {
self.x.display.display as *mut libc::c_void
}
2016-10-20 03:11:02 +11:00
#[inline]
pub fn get_xlib_screen_id(&self) -> *mut libc::c_void {
self.x.screen_id as *mut libc::c_void
}
#[inline]
pub fn get_xlib_xconnection(&self) -> Arc<XConnection> {
self.x.display.clone()
}
2015-09-21 22:42:05 +10:00
#[inline]
pub fn platform_display(&self) -> *mut libc::c_void {
self.x.display.display as *mut libc::c_void
}
#[inline]
pub fn get_xlib_window(&self) -> *mut libc::c_void {
self.x.window as *mut libc::c_void
}
2015-09-21 22:42:05 +10:00
#[inline]
pub fn platform_window(&self) -> *mut libc::c_void {
self.x.window as *mut libc::c_void
}
pub fn get_xcb_connection(&self) -> *mut libc::c_void {
unsafe {
(self.x.display.xlib_xcb.XGetXCBConnection)(self.get_xlib_display() as *mut _) as *mut _
}
}
2015-09-21 22:42:05 +10:00
#[inline]
pub fn set_window_resize_callback(&mut self, _: Option<fn(u32, u32)>) {
}
pub fn set_cursor(&self, cursor: MouseCursor) {
unsafe {
let load = |name: &str| {
self.load_cursor(name)
};
let loadn = |names: &[&str]| {
self.load_first_existing_cursor(names)
};
// Try multiple names in some cases where the name
// differs on the desktop environments or themes.
//
// Try the better looking (or more suiting) names first.
let mut xcursor = match cursor {
MouseCursor::Alias => load("link"),
MouseCursor::Arrow => load("arrow"),
MouseCursor::Cell => load("plus"),
MouseCursor::Copy => load("copy"),
MouseCursor::Crosshair => load("crosshair"),
MouseCursor::Default => load("left_ptr"),
MouseCursor::Hand => loadn(&["hand2", "hand1"]),
MouseCursor::Help => load("question_arrow"),
MouseCursor::Move => load("move"),
MouseCursor::Grab => loadn(&["openhand", "grab"]),
MouseCursor::Grabbing => loadn(&["closedhand", "grabbing"]),
MouseCursor::Progress => load("left_ptr_watch"),
MouseCursor::AllScroll => load("all-scroll"),
MouseCursor::ContextMenu => load("context-menu"),
MouseCursor::NoDrop => loadn(&["no-drop", "circle"]),
MouseCursor::NotAllowed => load("crossed_circle"),
/// Resize cursors
MouseCursor::EResize => load("right_side"),
MouseCursor::NResize => load("top_side"),
MouseCursor::NeResize => load("top_right_corner"),
MouseCursor::NwResize => load("top_left_corner"),
MouseCursor::SResize => load("bottom_side"),
MouseCursor::SeResize => load("bottom_right_corner"),
MouseCursor::SwResize => load("bottom_left_corner"),
MouseCursor::WResize => load("left_side"),
MouseCursor::EwResize => load("h_double_arrow"),
MouseCursor::NsResize => load("v_double_arrow"),
MouseCursor::NwseResize => loadn(&["bd_double_arrow", "size_bdiag"]),
MouseCursor::NeswResize => loadn(&["fd_double_arrow", "size_fdiag"]),
MouseCursor::ColResize => loadn(&["split_h", "h_double_arrow"]),
MouseCursor::RowResize => loadn(&["split_v", "v_double_arrow"]),
MouseCursor::Text => loadn(&["text", "xterm"]),
MouseCursor::VerticalText => load("vertical-text"),
MouseCursor::Wait => load("watch"),
MouseCursor::ZoomIn => load("zoom-in"),
MouseCursor::ZoomOut => load("zoom-out"),
MouseCursor::NoneCursor => self.create_empty_cursor(),
};
(self.x.display.xlib.XDefineCursor)(self.x.display.display, self.x.window, xcursor);
if xcursor != 0 {
(self.x.display.xlib.XFreeCursor)(self.x.display.display, xcursor);
}
self.x.display.check_errors().expect("Failed to set or free the cursor");
}
}
fn load_cursor(&self, name: &str) -> ffi::Cursor {
use std::ffi::CString;
unsafe {
let c_string = CString::new(name.as_bytes()).unwrap();
(self.x.display.xcursor.XcursorLibraryLoadCursor)(self.x.display.display, c_string.as_ptr())
}
}
fn load_first_existing_cursor(&self, names :&[&str]) -> ffi::Cursor {
for name in names.iter() {
let xcursor = self.load_cursor(name);
if xcursor != 0 {
return xcursor;
}
}
0
}
// TODO: This could maybe be cached. I don't think it's worth
// the complexity, since cursor changes are not so common,
// and this is just allocating a 1x1 pixmap...
fn create_empty_cursor(&self) -> ffi::Cursor {
use std::mem;
let data = 0;
unsafe {
let pixmap = (self.x.display.xlib.XCreateBitmapFromData)(self.x.display.display, self.x.window, &data, 1, 1);
if pixmap == 0 {
// Failed to allocate
return 0;
}
// We don't care about this color, since it only fills bytes
// in the pixmap which are not 0 in the mask.
let dummy_color: ffi::XColor = mem::uninitialized();
let cursor = (self.x.display.xlib.XCreatePixmapCursor)(self.x.display.display,
pixmap,
pixmap,
&dummy_color as *const _ as *mut _,
&dummy_color as *const _ as *mut _, 0, 0);
(self.x.display.xlib.XFreePixmap)(self.x.display.display, pixmap);
cursor
}
}
pub fn set_cursor_state(&self, state: CursorState) -> Result<(), String> {
2016-03-22 05:42:54 +11:00
use CursorState::{ Grab, Normal, Hide };
let mut cursor_state = self.cursor_state.lock().unwrap();
match (state, *cursor_state) {
2016-03-22 05:42:54 +11:00
(Normal, Normal) | (Hide, Hide) | (Grab, Grab) => return Ok(()),
_ => {},
}
match *cursor_state {
Grab => {
unsafe {
(self.x.display.xlib.XUngrabPointer)(self.x.display.display, ffi::CurrentTime);
2015-12-24 20:57:08 +11:00
self.x.display.check_errors().expect("Failed to call XUngrabPointer");
}
},
2016-03-22 05:42:54 +11:00
Normal => {},
Hide => {
// NB: Calling XDefineCursor with None (aka 0)
// as a value resets the cursor to the default.
unsafe {
(self.x.display.xlib.XDefineCursor)(self.x.display.display, self.x.window, 0);
2016-03-22 05:42:54 +11:00
}
},
}
2016-03-22 05:42:54 +11:00
*cursor_state = state;
match state {
Normal => Ok(()),
Hide => {
unsafe {
let cursor = self.create_empty_cursor();
2016-03-22 05:42:54 +11:00
(self.x.display.xlib.XDefineCursor)(self.x.display.display, self.x.window, cursor);
if cursor != 0 {
(self.x.display.xlib.XFreeCursor)(self.x.display.display, cursor);
}
self.x.display.check_errors().expect("Failed to call XDefineCursor or free the empty cursor");
2016-03-22 05:42:54 +11:00
}
Ok(())
},
Grab => {
unsafe {
match (self.x.display.xlib.XGrabPointer)(
self.x.display.display, self.x.window, ffi::True,
(ffi::ButtonPressMask | ffi::ButtonReleaseMask | ffi::EnterWindowMask |
ffi::LeaveWindowMask | ffi::PointerMotionMask | ffi::PointerMotionHintMask |
ffi::Button1MotionMask | ffi::Button2MotionMask | ffi::Button3MotionMask |
ffi::Button4MotionMask | ffi::Button5MotionMask | ffi::ButtonMotionMask |
ffi::KeymapStateMask) as libc::c_uint,
ffi::GrabModeAsync, ffi::GrabModeAsync,
self.x.window, 0, ffi::CurrentTime
) {
ffi::GrabSuccess => Ok(()),
ffi::AlreadyGrabbed | ffi::GrabInvalidTime |
ffi::GrabNotViewable | ffi::GrabFrozen
=> Err("cursor could not be grabbed".to_string()),
_ => unreachable!(),
}
}
},
}
}
pub fn hidpi_factor(&self) -> f32 {
unsafe {
let x_px = (self.x.display.xlib.XDisplayWidth)(self.x.display.display, self.x.screen_id);
let y_px = (self.x.display.xlib.XDisplayHeight)(self.x.display.display, self.x.screen_id);
let x_mm = (self.x.display.xlib.XDisplayWidthMM)(self.x.display.display, self.x.screen_id);
let y_mm = (self.x.display.xlib.XDisplayHeightMM)(self.x.display.display, self.x.screen_id);
let ppmm = ((x_px as f32 * y_px as f32) / (x_mm as f32 * y_mm as f32)).sqrt();
((ppmm * (12.0 * 25.4 / 96.0)).round() / 12.0).max(1.0) // quantize with 1/12 step size.
}
}
pub fn set_cursor_position(&self, x: i32, y: i32) -> Result<(), ()> {
unsafe {
(self.x.display.xlib.XWarpPointer)(self.x.display.display, 0, self.x.window, 0, 0, 0, 0, x, y);
2015-12-24 20:57:08 +11:00
self.x.display.check_errors().map_err(|_| ())
}
}
}