gba/src/lib.rs

254 lines
7.2 KiB
Rust
Raw Normal View History

#![cfg_attr(not(test), no_std)]
2018-12-18 20:05:59 +11:00
#![feature(asm)]
#![feature(const_int_wrapping)]
2018-12-24 09:10:14 +11:00
#![feature(const_int_rotate)]
#![feature(min_const_unsafe_fn)]
2018-12-26 17:19:16 +11:00
//#![warn(missing_docs)]
2018-12-18 11:00:22 +11:00
#![allow(clippy::cast_lossless)]
2018-12-08 19:53:37 +11:00
#![deny(clippy::float_arithmetic)]
//! This crate helps you write GBA ROMs.
//!
2018-12-18 11:00:22 +11:00
//! ## SAFETY POLICY
//!
//! Some parts of this crate are safe wrappers around unsafe operations. This is
//! good, and what you'd expect from a Rust crate.
//!
//! However, the safe wrappers all assume that you will _only_ attempt to
//! execute this crate on a GBA or in a GBA Emulator.
//!
//! **Do not** use this crate in programs that aren't running on the GBA. If you
//! do, it's a giant bag of Undefined Behavior.
2018-12-26 17:19:16 +11:00
pub(crate) use gba_proc_macro::{bool_bits, multi_bits};
2018-12-26 08:45:51 +11:00
2018-12-18 11:00:22 +11:00
/// Assists in defining a newtype wrapper over some base type.
///
/// Note that rustdoc and derives are all the "meta" stuff, so you can write all
/// of your docs and derives in front of your newtype in the same way you would
/// for a normal struct. Then the inner type to be wrapped it name.
///
/// The macro _assumes_ that you'll be using it to wrap zero safe numeric types,
/// so it automatically provides a `const fn` method for `new` that just wraps
/// `0`. If this is not desired you can add `, no frills` to the invocation.
///
/// Example:
/// ```
/// newtype! {
/// /// Records a particular key press combination.
/// #[derive(Debug, Copy, Clone, Default, PartialEq, Eq)]
/// KeyInput, u16
/// }
/// ```
#[macro_export]
macro_rules! newtype {
2018-12-26 10:45:10 +11:00
($(#[$attr:meta])* $new_name:ident, $v:vis $old_name:ty) => {
2018-12-18 11:00:22 +11:00
$(#[$attr])*
#[repr(transparent)]
2018-12-26 10:45:10 +11:00
pub struct $new_name($v $old_name);
2018-12-18 11:00:22 +11:00
impl $new_name {
/// A `const` "zero value" constructor
pub const fn new() -> Self {
$new_name(0)
}
}
};
2018-12-26 10:45:10 +11:00
($(#[$attr:meta])* $new_name:ident, $v:vis $old_name:ty, no frills) => {
2018-12-18 11:00:22 +11:00
$(#[$attr])*
#[repr(transparent)]
2018-12-26 10:45:10 +11:00
pub struct $new_name($v $old_name);
2018-12-18 11:00:22 +11:00
};
}
2018-12-21 12:08:54 +11:00
pub mod base;
pub(crate) use self::base::*;
2018-12-17 09:17:30 +11:00
pub mod bios;
pub mod io;
pub mod mgba;
2018-12-26 08:45:51 +11:00
pub mod palram;
2018-12-26 10:45:10 +11:00
pub mod video;
newtype! {
/// A color on the GBA is an RGB 5.5.5 within a `u16`
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
Color, u16
}
impl Color {
/// Constructs a color from the channel values provided (should be 0..=31).
///
/// No actual checks are performed, so illegal channel values can overflow
/// into each other and produce an unintended color.
pub const fn from_rgb(r: u16, g: u16, b: u16) -> Color {
Color(b << 10 | g << 5 | r)
}
2018-12-24 09:10:14 +11:00
/// Does a left rotate of the bits.
///
/// This has no particular meaning but is a wild way to cycle colors.
pub const fn rotate_left(self, n: u32) -> Color {
Color(self.0.rotate_left(n))
}
}
//
// After here is totally unsorted nonsense
//
/// Performs unsigned divide and remainder, gives None if dividing by 0.
pub fn divrem_u32(numer: u32, denom: u32) -> Option<(u32, u32)> {
// TODO: const this? Requires const if
if denom == 0 {
None
} else {
Some(unsafe { divrem_u32_unchecked(numer, denom) })
}
}
/// Performs divide and remainder, no check for 0 division.
///
/// # Safety
///
/// If you call this with a denominator of 0 the result is implementation
/// defined (not literal UB) including but not limited to: an infinite loop,
/// panic on overflow, or incorrect output.
pub unsafe fn divrem_u32_unchecked(numer: u32, denom: u32) -> (u32, u32) {
// TODO: const this? Requires const if
if (numer >> 5) < denom {
divrem_u32_simple(numer, denom)
} else {
divrem_u32_non_restoring(numer, denom)
}
}
/// The simplest form of division. If N is too much larger than D this will be
/// extremely slow. If N is close enough to D then it will likely be faster than
/// the non_restoring form.
fn divrem_u32_simple(mut numer: u32, denom: u32) -> (u32, u32) {
// TODO: const this? Requires const if
let mut quot = 0;
while numer >= denom {
numer -= denom;
quot += 1;
}
(quot, numer)
}
/// Takes a fixed quantity of time based on the bit width of the number (in this
/// case 32).
fn divrem_u32_non_restoring(numer: u32, denom: u32) -> (u32, u32) {
// TODO: const this? Requires const if
let mut r: i64 = numer as i64;
let d: i64 = (denom as i64) << 32;
let mut q: u32 = 0;
let mut i = 1 << 31;
while i > 0 {
if r >= 0 {
q |= i;
r = 2 * r - d;
} else {
r = 2 * r + d;
}
i >>= 1;
}
q -= !q;
if r < 0 {
q -= 1;
r += d;
}
r >>= 32;
// TODO: remove this once we've done more checks here.
debug_assert!(r >= 0);
debug_assert!(r <= core::u32::MAX as i64);
(q, r as u32)
}
/// Performs signed divide and remainder, gives None if dividing by 0 or
/// computing `MIN/-1`
pub fn divrem_i32(numer: i32, denom: i32) -> Option<(i32, i32)> {
if denom == 0 || (numer == core::i32::MIN && denom == -1) {
None
} else {
Some(unsafe { divrem_i32_unchecked(numer, denom) })
}
}
/// Performs signed divide and remainder, no check for 0 division or `MIN/-1`.
///
/// # Safety
///
/// * If you call this with a denominator of 0 the result is implementation
/// defined (not literal UB) including but not limited to: an infinite loop,
/// panic on overflow, or incorrect output.
/// * If you call this with `MIN/-1` you'll get a panic in debug or just `MIN`
/// in release (which is incorrect), because of how twos-compliment works.
pub unsafe fn divrem_i32_unchecked(numer: i32, denom: i32) -> (i32, i32) {
// TODO: const this? Requires const if
let unsigned_numer = numer.abs() as u32;
let unsigned_denom = denom.abs() as u32;
let opposite_sign = (numer ^ denom) < 0;
let (udiv, urem) = if (numer >> 5) < denom {
divrem_u32_simple(unsigned_numer, unsigned_denom)
} else {
divrem_u32_non_restoring(unsigned_numer, unsigned_denom)
};
match (opposite_sign, numer < 0) {
(true, true) => (-(udiv as i32), -(urem as i32)),
(true, false) => (-(udiv as i32), urem as i32),
(false, true) => (udiv as i32, -(urem as i32)),
(false, false) => (udiv as i32, urem as i32),
}
}
/*
#[cfg(test)]
mod tests {
use super::*;
use quickcheck::quickcheck;
// We have an explicit property on the non_restoring division
quickcheck! {
fn divrem_u32_non_restoring_prop(num: u32, denom: u32) -> bool {
if denom > 0 {
divrem_u32_non_restoring(num, denom) == (num / denom, num % denom)
} else {
true
}
}
}
// We have an explicit property on the simple division
quickcheck! {
fn divrem_u32_simple_prop(num: u32, denom: u32) -> bool {
if denom > 0 {
divrem_u32_simple(num, denom) == (num / denom, num % denom)
} else {
true
}
}
}
// Test the u32 wrapper
quickcheck! {
fn divrem_u32_prop(num: u32, denom: u32) -> bool {
if denom > 0 {
divrem_u32(num, denom).unwrap() == (num / denom, num % denom)
} else {
divrem_u32(num, denom).is_none()
}
}
}
// test the i32 wrapper
quickcheck! {
fn divrem_i32_prop(num: i32, denom: i32) -> bool {
if denom == 0 || num == core::i32::MIN && denom == -1 {
divrem_i32(num, denom).is_none()
} else {
divrem_i32(num, denom).unwrap() == (num / denom, num % denom)
}
}
}
}
*/