* Add min/max size setting for win32 and wayland backends
* Implement dynamic min/max size on macos
* Add min/max size setting for x11
* Add empty functions for remaining platforms
* Improved min/max size setting for x11
* Added CHANGELOG entry for new min/max methods
* Added documentation for new min/max methods
* On win32, bound window size to min/max dimensions on window creation
* On win32, force re-check of window size when changing min/max dimensions
* Fix freeze when setting min and max size
This has been stubbed on all platforms other than X11. The X11 implementation has also been
revised to toggle correctly, as it was previously only able to remove decorations.
* Implement public API for high-DPI #105
* Recover get_inner_size_points and get_inner_size_pixels and change their implementation assuming get_inner_size() returns size in pixels
* Update changelog for high-DPI changes
* Fix X11 screen resolution change using XrandR
The previous XF86 resolution switching was broken and everything
seems to have moved on to xrandr. Use that instead while cleaning
up the code a bit as well.
* Use XRandR for actual multiscreen support in X11
* Use actual monitor names in X11
* Get rid of ptr::read usage in X11
* Use a bog standard Vec instead of VecDeque
* Get rid of the XRandR mode switching stuff
Wayland has made the decision that apps shouldn't change screen
resolutions and just take the screens as they've been setup. In the
modern world where GPU scaling is cheap and LCD panels are scaling
anyway it makes no sense to make "physical" resolution changes when
software should be taking care of it. This massively simplifies the
code and makes it easier to extend to more niche setups like MST and
videowalls.
* Rename fullscreen options to match new semantics
* Implement XRandR 1.5 support
* Get rid of the FullScreen enum
Moving to just having two states None and Some(MonitorId) and then
being able to set full screen in the current monitor with something
like:
window.set_fullscreen(Some(window.current_monitor()));
* Implement Window::get_current_monitor()
Do it by iterating over the available monitors and finding which
has the biggest overlap with the window. For this MonitorId needs
a new get_position() that needs to be implemented for all platforms.
* Add unimplemented get_position() to all MonitorId
* Make get_current_monitor() platform specific
* Add unimplemented get_current_monitor() to all
* Implement proper primary monitor selection in X11
* Shut up some warnings
* Remove libxxf86vm package from travis
Since we're no longer using XF86 there's no need to keep the package
around for CI.
* Don't use new struct syntax
* Fix indentation
* Adjust Android/iOS fullscreen/maximized
On Android and iOS we can assume single screen apps that are already
fullscreen and maximized so there are a few methods that are implemented
by just returning a fixed value or not doing anything.
* Mark OSX/Win fullscreen/maximized unimplemented()!
These would be safe as no-ops but we should make it explicit so
there is more of an incentive to actually implement them.
* Rework MonitorId::get_native_identifier
* Try fix compilation
* Returns the monitor ID on wayland as well
* Try fix compilation
* Fix iOS compilation
There are two kinds of fullscreen. One where you take over the whole
output the other where you just set the window size to the screen
size and get rid of decorations. The first one already existed,
implement the second which is more common for normal desktop apps.
Use an enum to consolidate all the fullscreen states.