winit-sonoma-fix/src/platform/linux/x11/window.rs

1214 lines
45 KiB
Rust
Raw Normal View History

use std::{cmp, env, mem};
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
use std::ffi::CString;
2018-05-08 07:36:21 +10:00
use std::os::raw::*;
use std::path::Path;
2018-05-08 07:36:21 +10:00
use std::sync::Arc;
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
2018-05-08 07:36:21 +10:00
use libc;
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
use parking_lot::Mutex;
use {Icon, MouseCursor, WindowAttributes};
2018-05-08 07:36:21 +10:00
use CreationError::{self, OsError};
use dpi::{LogicalPosition, LogicalSize};
2015-09-24 17:11:59 +10:00
use platform::MonitorId as PlatformMonitorId;
2018-05-08 07:36:21 +10:00
use platform::PlatformSpecificWindowBuilderAttributes;
Move fullscreen modes to not touch physical resolutions (#270) * Fix X11 screen resolution change using XrandR The previous XF86 resolution switching was broken and everything seems to have moved on to xrandr. Use that instead while cleaning up the code a bit as well. * Use XRandR for actual multiscreen support in X11 * Use actual monitor names in X11 * Get rid of ptr::read usage in X11 * Use a bog standard Vec instead of VecDeque * Get rid of the XRandR mode switching stuff Wayland has made the decision that apps shouldn't change screen resolutions and just take the screens as they've been setup. In the modern world where GPU scaling is cheap and LCD panels are scaling anyway it makes no sense to make "physical" resolution changes when software should be taking care of it. This massively simplifies the code and makes it easier to extend to more niche setups like MST and videowalls. * Rename fullscreen options to match new semantics * Implement XRandR 1.5 support * Get rid of the FullScreen enum Moving to just having two states None and Some(MonitorId) and then being able to set full screen in the current monitor with something like: window.set_fullscreen(Some(window.current_monitor())); * Implement Window::get_current_monitor() Do it by iterating over the available monitors and finding which has the biggest overlap with the window. For this MonitorId needs a new get_position() that needs to be implemented for all platforms. * Add unimplemented get_position() to all MonitorId * Make get_current_monitor() platform specific * Add unimplemented get_current_monitor() to all * Implement proper primary monitor selection in X11 * Shut up some warnings * Remove libxxf86vm package from travis Since we're no longer using XF86 there's no need to keep the package around for CI. * Don't use new struct syntax * Fix indentation * Adjust Android/iOS fullscreen/maximized On Android and iOS we can assume single screen apps that are already fullscreen and maximized so there are a few methods that are implemented by just returning a fixed value or not doing anything. * Mark OSX/Win fullscreen/maximized unimplemented()! These would be safe as no-ops but we should make it explicit so there is more of an incentive to actually implement them.
2017-09-07 18:33:46 +10:00
use platform::x11::MonitorId as X11MonitorId;
2018-05-08 07:36:21 +10:00
use window::MonitorId as RootMonitorId;
Move fullscreen modes to not touch physical resolutions (#270) * Fix X11 screen resolution change using XrandR The previous XF86 resolution switching was broken and everything seems to have moved on to xrandr. Use that instead while cleaning up the code a bit as well. * Use XRandR for actual multiscreen support in X11 * Use actual monitor names in X11 * Get rid of ptr::read usage in X11 * Use a bog standard Vec instead of VecDeque * Get rid of the XRandR mode switching stuff Wayland has made the decision that apps shouldn't change screen resolutions and just take the screens as they've been setup. In the modern world where GPU scaling is cheap and LCD panels are scaling anyway it makes no sense to make "physical" resolution changes when software should be taking care of it. This massively simplifies the code and makes it easier to extend to more niche setups like MST and videowalls. * Rename fullscreen options to match new semantics * Implement XRandR 1.5 support * Get rid of the FullScreen enum Moving to just having two states None and Some(MonitorId) and then being able to set full screen in the current monitor with something like: window.set_fullscreen(Some(window.current_monitor())); * Implement Window::get_current_monitor() Do it by iterating over the available monitors and finding which has the biggest overlap with the window. For this MonitorId needs a new get_position() that needs to be implemented for all platforms. * Add unimplemented get_position() to all MonitorId * Make get_current_monitor() platform specific * Add unimplemented get_current_monitor() to all * Implement proper primary monitor selection in X11 * Shut up some warnings * Remove libxxf86vm package from travis Since we're no longer using XF86 there's no need to keep the package around for CI. * Don't use new struct syntax * Fix indentation * Adjust Android/iOS fullscreen/maximized On Android and iOS we can assume single screen apps that are already fullscreen and maximized so there are a few methods that are implemented by just returning a fixed value or not doing anything. * Mark OSX/Win fullscreen/maximized unimplemented()! These would be safe as no-ops but we should make it explicit so there is more of an incentive to actually implement them.
2017-09-07 18:33:46 +10:00
2018-06-15 09:42:18 +10:00
use super::{ffi, util, ImeSender, XConnection, XError, WindowId, EventsLoop};
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
unsafe extern "C" fn visibility_predicate(
_display: *mut ffi::Display,
event: *mut ffi::XEvent,
arg: ffi::XPointer, // We populate this with the window ID (by value) when we call XIfEvent
) -> ffi::Bool {
let event: &ffi::XAnyEvent = (*event).as_ref();
let window = arg as ffi::Window;
(event.window == window && event.type_ == ffi::VisibilityNotify) as _
}
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
#[derive(Debug, Default)]
pub struct SharedState {
2018-05-29 21:48:47 +10:00
pub cursor_pos: Option<(f64, f64)>,
pub size: Option<(u32, u32)>,
pub position: Option<(i32, i32)>,
pub inner_position: Option<(i32, i32)>,
pub inner_position_rel_parent: Option<(i32, i32)>,
pub guessed_dpi: Option<f64>,
2018-05-29 21:48:47 +10:00
pub last_monitor: Option<X11MonitorId>,
pub dpi_adjusted: Option<(f64, f64)>,
2018-06-15 09:42:18 +10:00
// Used to restore position after exiting fullscreen.
pub restore_position: Option<(i32, i32)>,
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
pub frame_extents: Option<util::FrameExtentsHeuristic>,
2018-06-15 09:42:18 +10:00
pub min_dimensions: Option<LogicalSize>,
pub max_dimensions: Option<LogicalSize>,
}
impl SharedState {
fn new(dpi_factor: f64) -> Mutex<Self> {
2018-06-15 09:42:18 +10:00
let mut shared_state = SharedState::default();
shared_state.guessed_dpi = Some(dpi_factor);
2018-06-15 09:42:18 +10:00
Mutex::new(shared_state)
}
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
}
2018-05-29 21:48:47 +10:00
unsafe impl Send for UnownedWindow {}
unsafe impl Sync for UnownedWindow {}
pub struct UnownedWindow {
pub xconn: Arc<XConnection>, // never changes
xwindow: ffi::Window, // never changes
root: ffi::Window, // never changes
screen_id: i32, // never changes
cursor: Mutex<MouseCursor>,
cursor_grabbed: Mutex<bool>,
cursor_hidden: Mutex<bool>,
2018-06-15 09:42:18 +10:00
ime_sender: Mutex<ImeSender>,
2018-05-29 21:48:47 +10:00
pub multitouch: bool, // never changes
pub shared_state: Mutex<SharedState>,
}
2018-05-29 21:48:47 +10:00
impl UnownedWindow {
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
pub fn new(
2018-05-29 21:48:47 +10:00
event_loop: &EventsLoop,
2018-05-08 07:36:21 +10:00
window_attrs: WindowAttributes,
pl_attribs: PlatformSpecificWindowBuilderAttributes,
2018-05-29 21:48:47 +10:00
) -> Result<UnownedWindow, CreationError> {
let xconn = &event_loop.xconn;
let root = event_loop.root;
let monitors = xconn.get_available_monitors();
let dpi_factor = if !monitors.is_empty() {
let mut dpi_factor = Some(monitors[0].get_hidpi_factor());
for monitor in &monitors {
if Some(monitor.get_hidpi_factor()) != dpi_factor {
dpi_factor = None;
}
}
dpi_factor.unwrap_or_else(|| {
xconn.query_pointer(root, util::VIRTUAL_CORE_POINTER)
.ok()
.and_then(|pointer_state| {
let (x, y) = (pointer_state.root_x as i64, pointer_state.root_y as i64);
let mut dpi_factor = None;
for monitor in &monitors {
if monitor.rect.contains_point(x, y) {
dpi_factor = Some(monitor.get_hidpi_factor());
break;
}
}
dpi_factor
})
.unwrap_or(1.0)
})
} else {
return Err(OsError(format!("No monitors were detected.")));
};
info!("Guessed window DPI factor: {}", dpi_factor);
let max_dimensions: Option<(u32, u32)> = window_attrs.max_dimensions.map(|size| {
size.to_physical(dpi_factor).into()
});
let min_dimensions: Option<(u32, u32)> = window_attrs.min_dimensions.map(|size| {
size.to_physical(dpi_factor).into()
});
2018-06-15 09:42:18 +10:00
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
let dimensions = {
// x11 only applies constraints when the window is actively resized
// by the user, so we have to manually apply the initial constraints
let mut dimensions: (u32, u32) = window_attrs.dimensions
.or_else(|| Some((800, 600).into()))
.map(|size| size.to_physical(dpi_factor))
2018-06-15 09:42:18 +10:00
.map(Into::into)
.unwrap();
2018-06-15 09:42:18 +10:00
if let Some(max) = max_dimensions {
dimensions.0 = cmp::min(dimensions.0, max.0);
dimensions.1 = cmp::min(dimensions.1, max.1);
}
2018-06-15 09:42:18 +10:00
if let Some(min) = min_dimensions {
dimensions.0 = cmp::max(dimensions.0, min.0);
dimensions.1 = cmp::max(dimensions.1, min.1);
}
debug!("Calculated physical dimensions: {}x{}", dimensions.0, dimensions.1);
dimensions
};
let screen_id = match pl_attribs.screen_id {
Some(id) => id,
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
None => unsafe { (xconn.xlib.XDefaultScreen)(xconn.display) },
};
// creating
let mut set_win_attr = {
let mut swa: ffi::XSetWindowAttributes = unsafe { mem::zeroed() };
swa.colormap = if let Some(vi) = pl_attribs.visual_infos {
unsafe {
let visual = vi.visual;
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
(xconn.xlib.XCreateColormap)(xconn.display, root, visual, ffi::AllocNone)
}
} else { 0 };
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
swa.event_mask = ffi::ExposureMask
| ffi::StructureNotifyMask
| ffi::VisibilityChangeMask
| ffi::KeyPressMask
| ffi::KeyReleaseMask
| ffi::KeymapStateMask
| ffi::ButtonPressMask
| ffi::ButtonReleaseMask
| ffi::PointerMotionMask;
swa.border_pixel = 0;
swa.override_redirect = pl_attribs.override_redirect as c_int;
swa
};
let mut window_attributes = ffi::CWBorderPixel | ffi::CWColormap | ffi::CWEventMask;
2015-06-15 07:20:32 +10:00
if pl_attribs.override_redirect {
window_attributes |= ffi::CWOverrideRedirect;
}
// finally creating the window
2018-05-29 21:48:47 +10:00
let xwindow = unsafe {
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
(xconn.xlib.XCreateWindow)(
xconn.display,
root,
0,
0,
dimensions.0 as c_uint,
dimensions.1 as c_uint,
0,
match pl_attribs.visual_infos {
Some(vi) => vi.depth,
None => ffi::CopyFromParent,
},
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
ffi::InputOutput as c_uint,
match pl_attribs.visual_infos {
Some(vi) => vi.visual,
None => ffi::CopyFromParent as *mut ffi::Visual,
},
window_attributes,
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
&mut set_win_attr,
)
};
2018-05-29 21:48:47 +10:00
let window = UnownedWindow {
xconn: Arc::clone(xconn),
xwindow,
root,
screen_id,
2018-05-29 21:48:47 +10:00
cursor: Default::default(),
cursor_grabbed: Default::default(),
cursor_hidden: Default::default(),
2018-06-15 09:42:18 +10:00
ime_sender: Mutex::new(event_loop.ime_sender.clone()),
2018-05-29 21:48:47 +10:00
multitouch: window_attrs.multitouch,
shared_state: SharedState::new(dpi_factor),
};
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
// Title must be set before mapping. Some tiling window managers (i.e. i3) use the window
// title to determine placement/etc., so doing this after mapping would cause the WM to
// act on the wrong title state.
window.set_title_inner(&window_attrs.title).queue();
window.set_decorations_inner(window_attrs.decorations).queue();
{
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
// Enable drag and drop (TODO: extend API to make this toggleable)
unsafe {
2018-05-27 22:49:35 +10:00
let dnd_aware_atom = xconn.get_atom_unchecked(b"XdndAware\0");
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
let version = &[5 as c_ulong]; // Latest version; hasn't changed since 2002
2018-05-27 22:49:35 +10:00
xconn.change_property(
2018-05-29 21:48:47 +10:00
window.xwindow,
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
dnd_aware_atom,
ffi::XA_ATOM,
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
util::PropMode::Replace,
version,
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
)
}.queue();
2015-12-24 20:57:08 +11:00
// WM_CLASS must be set *before* mapping the window, as per ICCCM!
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
{
let (class, instance) = if let Some((instance, class)) = pl_attribs.class {
let instance = CString::new(instance.as_str())
.expect("`WM_CLASS` instance contained null byte");
let class = CString::new(class.as_str())
.expect("`WM_CLASS` class contained null byte");
(instance, class)
} else {
let class = env::args()
.next()
.as_ref()
// Default to the name of the binary (via argv[0])
.and_then(|path| Path::new(path).file_name())
.and_then(|bin_name| bin_name.to_str())
.map(|bin_name| bin_name.to_owned())
.or_else(|| Some(window_attrs.title.clone()))
.and_then(|string| CString::new(string.as_str()).ok())
.expect("Default `WM_CLASS` class contained null byte");
// This environment variable is extraordinarily unlikely to actually be used...
let instance = env::var("RESOURCE_NAME")
.ok()
.and_then(|instance| CString::new(instance.as_str()).ok())
.or_else(|| Some(class.clone()))
.expect("Default `WM_CLASS` instance contained null byte");
(instance, class)
};
2018-05-27 22:49:35 +10:00
let mut class_hint = xconn.alloc_class_hint();
(*class_hint).res_name = class.as_ptr() as *mut c_char;
(*class_hint).res_class = instance.as_ptr() as *mut c_char;
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
unsafe {
(xconn.xlib.XSetClassHint)(
xconn.display,
2018-05-29 21:48:47 +10:00
window.xwindow,
2018-05-27 22:49:35 +10:00
class_hint.ptr,
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
);
}//.queue();
}
2018-05-29 21:48:47 +10:00
window.set_pid().map(|flusher| flusher.queue());
if pl_attribs.x11_window_type != Default::default() {
2018-05-29 21:48:47 +10:00
window.set_window_type(pl_attribs.x11_window_type).queue();
}
if let Some(variant) = pl_attribs.gtk_theme_variant {
window.set_gtk_theme_variant(variant).queue();
}
// set size hints
{
let mut min_dimensions = window_attrs.min_dimensions
.map(|size| size.to_physical(dpi_factor));
let mut max_dimensions = window_attrs.max_dimensions
.map(|size| size.to_physical(dpi_factor));
if !window_attrs.resizable {
if util::wm_name_is_one_of(&["Xfwm4"]) {
warn!("To avoid a WM bug, disabling resizing has no effect on Xfwm4");
} else {
max_dimensions = Some(dimensions.into());
min_dimensions = Some(dimensions.into());
let mut shared_state_lock = window.shared_state.lock();
shared_state_lock.min_dimensions = window_attrs.min_dimensions;
shared_state_lock.max_dimensions = window_attrs.max_dimensions;
}
}
2018-06-15 09:42:18 +10:00
let mut normal_hints = util::NormalHints::new(xconn);
normal_hints.set_size(Some(dimensions));
normal_hints.set_min_size(min_dimensions.map(Into::into));
normal_hints.set_max_size(max_dimensions.map(Into::into));
normal_hints.set_resize_increments(pl_attribs.resize_increments);
normal_hints.set_base_size(pl_attribs.base_size);
xconn.set_normal_hints(window.xwindow, normal_hints).queue();
}
2018-05-08 07:36:21 +10:00
// Set window icons
if let Some(icon) = window_attrs.window_icon {
window.set_icon_inner(icon).queue();
}
// Opt into handling window close
unsafe {
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
(xconn.xlib.XSetWMProtocols)(
xconn.display,
2018-05-29 21:48:47 +10:00
window.xwindow,
&event_loop.wm_delete_window as *const ffi::Atom as *mut ffi::Atom,
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
1,
);
}//.queue();
// Set visibility (map window)
if window_attrs.visible {
unsafe {
2018-05-29 21:48:47 +10:00
(xconn.xlib.XMapRaised)(xconn.display, window.xwindow);
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
}//.queue();
}
// Attempt to make keyboard input repeat detectable
unsafe {
let mut supported_ptr = ffi::False;
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
(xconn.xlib.XkbSetDetectableAutoRepeat)(
xconn.display,
ffi::True,
&mut supported_ptr,
);
if supported_ptr == ffi::False {
2018-06-15 09:42:18 +10:00
return Err(OsError(format!("`XkbSetDetectableAutoRepeat` failed")));
}
}
// Select XInput2 events
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
let mask = {
let mut mask = ffi::XI_MotionMask
| ffi::XI_ButtonPressMask
| ffi::XI_ButtonReleaseMask
//| ffi::XI_KeyPressMask
//| ffi::XI_KeyReleaseMask
| ffi::XI_EnterMask
| ffi::XI_LeaveMask
| ffi::XI_FocusInMask
| ffi::XI_FocusOutMask;
if window_attrs.multitouch {
mask |= ffi::XI_TouchBeginMask
| ffi::XI_TouchUpdateMask
| ffi::XI_TouchEndMask;
}
mask
};
2018-05-29 21:48:47 +10:00
xconn.select_xinput_events(window.xwindow, ffi::XIAllMasterDevices, mask).queue();
2018-06-15 09:42:18 +10:00
{
let result = event_loop.ime
.borrow_mut()
.create_context(window.xwindow);
if let Err(err) = result {
return Err(OsError(format!("Failed to create input context: {:?}", err)));
}
}
// These properties must be set after mapping
if window_attrs.maximized {
window.set_maximized_inner(window_attrs.maximized).queue();
}
if window_attrs.fullscreen.is_some() {
window.set_fullscreen_inner(window_attrs.fullscreen.clone()).queue();
}
if window_attrs.always_on_top {
window.set_always_on_top_inner(window_attrs.always_on_top).queue();
}
if window_attrs.visible {
unsafe {
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
// XSetInputFocus generates an error if the window is not visible, so we wait
// until we receive VisibilityNotify.
let mut event = mem::uninitialized();
(xconn.xlib.XIfEvent)( // This will flush the request buffer IF it blocks.
xconn.display,
&mut event as *mut ffi::XEvent,
Some(visibility_predicate),
2018-05-29 21:48:47 +10:00
window.xwindow as _,
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
);
(xconn.xlib.XSetInputFocus)(
xconn.display,
2018-05-29 21:48:47 +10:00
window.xwindow,
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
ffi::RevertToParent,
ffi::CurrentTime,
);
}
}
}
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
// We never want to give the user a broken window, since by then, it's too late to handle.
2018-05-27 22:49:35 +10:00
xconn.sync_with_server()
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
.map(|_| window)
.map_err(|x_err| OsError(
format!("X server returned error while building window: {:?}", x_err)
))
}
2018-06-15 09:42:18 +10:00
fn logicalize_coords(&self, (x, y): (i32, i32)) -> LogicalPosition {
let dpi = self.get_hidpi_factor();
LogicalPosition::from_physical((x, y), dpi)
}
fn logicalize_size(&self, (width, height): (u32, u32)) -> LogicalSize {
let dpi = self.get_hidpi_factor();
LogicalSize::from_physical((width, height), dpi)
}
2018-05-29 21:48:47 +10:00
fn set_pid(&self) -> Option<util::Flusher> {
let pid_atom = unsafe { self.xconn.get_atom_unchecked(b"_NET_WM_PID\0") };
let client_machine_atom = unsafe { self.xconn.get_atom_unchecked(b"WM_CLIENT_MACHINE\0") };
unsafe {
let (hostname, hostname_length) = {
// 64 would suffice for Linux, but 256 will be enough everywhere (as per SUSv2). For instance, this is
// the limit defined by OpenBSD.
const MAXHOSTNAMELEN: usize = 256;
let mut hostname: [c_char; MAXHOSTNAMELEN] = mem::uninitialized();
let status = libc::gethostname(hostname.as_mut_ptr(), hostname.len());
if status != 0 { return None; }
hostname[MAXHOSTNAMELEN - 1] = '\0' as c_char; // a little extra safety
let hostname_length = libc::strlen(hostname.as_ptr());
(hostname, hostname_length as usize)
};
2018-05-29 21:48:47 +10:00
self.xconn.change_property(
self.xwindow,
pid_atom,
ffi::XA_CARDINAL,
util::PropMode::Replace,
&[libc::getpid() as util::Cardinal],
).queue();
2018-05-29 21:48:47 +10:00
let flusher = self.xconn.change_property(
self.xwindow,
client_machine_atom,
ffi::XA_STRING,
util::PropMode::Replace,
&hostname[0..hostname_length],
);
Some(flusher)
}
}
2018-05-29 21:48:47 +10:00
fn set_window_type(&self, window_type: util::WindowType) -> util::Flusher {
let hint_atom = unsafe { self.xconn.get_atom_unchecked(b"_NET_WM_WINDOW_TYPE\0") };
let window_type_atom = window_type.as_atom(&self.xconn);
self.xconn.change_property(
self.xwindow,
2018-05-27 22:49:35 +10:00
hint_atom,
ffi::XA_ATOM,
util::PropMode::Replace,
&[window_type_atom],
)
}
fn set_gtk_theme_variant(&self, variant: String) -> util::Flusher {
let hint_atom = unsafe { self.xconn.get_atom_unchecked(b"_GTK_THEME_VARIANT\0") };
let utf8_atom = unsafe { self.xconn.get_atom_unchecked(b"UTF8_STRING\0") };
let variant = CString::new(variant).expect("`_GTK_THEME_VARIANT` contained null byte");
self.xconn.change_property(
self.xwindow,
hint_atom,
utf8_atom,
util::PropMode::Replace,
variant.as_bytes(),
)
}
2018-06-15 09:42:18 +10:00
#[inline]
pub fn set_urgent(&self, is_urgent: bool) {
2018-05-29 21:48:47 +10:00
let mut wm_hints = self.xconn.get_wm_hints(self.xwindow).expect("`XGetWMHints` failed");
if is_urgent {
(*wm_hints).flags |= ffi::XUrgencyHint;
} else {
(*wm_hints).flags &= !ffi::XUrgencyHint;
}
2018-05-29 21:48:47 +10:00
self.xconn.set_wm_hints(self.xwindow, wm_hints).flush().expect("Failed to set urgency hint");
}
fn set_netwm(
2018-05-29 21:48:47 +10:00
&self,
operation: util::StateOperation,
properties: (c_long, c_long, c_long, c_long),
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
) -> util::Flusher {
2018-05-29 21:48:47 +10:00
let state_atom = unsafe { self.xconn.get_atom_unchecked(b"_NET_WM_STATE\0") };
self.xconn.send_client_msg(
self.xwindow,
self.root,
2018-05-27 22:49:35 +10:00
state_atom,
Some(ffi::SubstructureRedirectMask | ffi::SubstructureNotifyMask),
[
operation as c_long,
properties.0,
properties.1,
properties.2,
properties.3,
],
)
}
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
fn set_fullscreen_hint(&self, fullscreen: bool) -> util::Flusher {
2018-05-29 21:48:47 +10:00
let fullscreen_atom = unsafe { self.xconn.get_atom_unchecked(b"_NET_WM_STATE_FULLSCREEN\0") };
self.set_netwm(fullscreen.into(), (fullscreen_atom as c_long, 0, 0, 0))
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
}
fn set_fullscreen_inner(&self, monitor: Option<RootMonitorId>) -> util::Flusher {
Move fullscreen modes to not touch physical resolutions (#270) * Fix X11 screen resolution change using XrandR The previous XF86 resolution switching was broken and everything seems to have moved on to xrandr. Use that instead while cleaning up the code a bit as well. * Use XRandR for actual multiscreen support in X11 * Use actual monitor names in X11 * Get rid of ptr::read usage in X11 * Use a bog standard Vec instead of VecDeque * Get rid of the XRandR mode switching stuff Wayland has made the decision that apps shouldn't change screen resolutions and just take the screens as they've been setup. In the modern world where GPU scaling is cheap and LCD panels are scaling anyway it makes no sense to make "physical" resolution changes when software should be taking care of it. This massively simplifies the code and makes it easier to extend to more niche setups like MST and videowalls. * Rename fullscreen options to match new semantics * Implement XRandR 1.5 support * Get rid of the FullScreen enum Moving to just having two states None and Some(MonitorId) and then being able to set full screen in the current monitor with something like: window.set_fullscreen(Some(window.current_monitor())); * Implement Window::get_current_monitor() Do it by iterating over the available monitors and finding which has the biggest overlap with the window. For this MonitorId needs a new get_position() that needs to be implemented for all platforms. * Add unimplemented get_position() to all MonitorId * Make get_current_monitor() platform specific * Add unimplemented get_current_monitor() to all * Implement proper primary monitor selection in X11 * Shut up some warnings * Remove libxxf86vm package from travis Since we're no longer using XF86 there's no need to keep the package around for CI. * Don't use new struct syntax * Fix indentation * Adjust Android/iOS fullscreen/maximized On Android and iOS we can assume single screen apps that are already fullscreen and maximized so there are a few methods that are implemented by just returning a fixed value or not doing anything. * Mark OSX/Win fullscreen/maximized unimplemented()! These would be safe as no-ops but we should make it explicit so there is more of an incentive to actually implement them.
2017-09-07 18:33:46 +10:00
match monitor {
None => {
2018-06-15 09:42:18 +10:00
let flusher = self.set_fullscreen_hint(false);
if let Some(position) = self.shared_state.lock().restore_position.take() {
self.set_position_inner(position.0, position.1).queue();
}
flusher
},
Move fullscreen modes to not touch physical resolutions (#270) * Fix X11 screen resolution change using XrandR The previous XF86 resolution switching was broken and everything seems to have moved on to xrandr. Use that instead while cleaning up the code a bit as well. * Use XRandR for actual multiscreen support in X11 * Use actual monitor names in X11 * Get rid of ptr::read usage in X11 * Use a bog standard Vec instead of VecDeque * Get rid of the XRandR mode switching stuff Wayland has made the decision that apps shouldn't change screen resolutions and just take the screens as they've been setup. In the modern world where GPU scaling is cheap and LCD panels are scaling anyway it makes no sense to make "physical" resolution changes when software should be taking care of it. This massively simplifies the code and makes it easier to extend to more niche setups like MST and videowalls. * Rename fullscreen options to match new semantics * Implement XRandR 1.5 support * Get rid of the FullScreen enum Moving to just having two states None and Some(MonitorId) and then being able to set full screen in the current monitor with something like: window.set_fullscreen(Some(window.current_monitor())); * Implement Window::get_current_monitor() Do it by iterating over the available monitors and finding which has the biggest overlap with the window. For this MonitorId needs a new get_position() that needs to be implemented for all platforms. * Add unimplemented get_position() to all MonitorId * Make get_current_monitor() platform specific * Add unimplemented get_current_monitor() to all * Implement proper primary monitor selection in X11 * Shut up some warnings * Remove libxxf86vm package from travis Since we're no longer using XF86 there's no need to keep the package around for CI. * Don't use new struct syntax * Fix indentation * Adjust Android/iOS fullscreen/maximized On Android and iOS we can assume single screen apps that are already fullscreen and maximized so there are a few methods that are implemented by just returning a fixed value or not doing anything. * Mark OSX/Win fullscreen/maximized unimplemented()! These would be safe as no-ops but we should make it explicit so there is more of an incentive to actually implement them.
2017-09-07 18:33:46 +10:00
Some(RootMonitorId { inner: PlatformMonitorId::X(monitor) }) => {
2018-06-15 09:42:18 +10:00
let window_position = self.get_position_physical();
self.shared_state.lock().restore_position = window_position;
let monitor_origin: (i32, i32) = monitor.get_position().into();
self.set_position_inner(monitor_origin.0, monitor_origin.1).queue();
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
self.set_fullscreen_hint(true)
}
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
_ => unreachable!(),
}
}
2018-06-15 09:42:18 +10:00
#[inline]
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
pub fn set_fullscreen(&self, monitor: Option<RootMonitorId>) {
self.set_fullscreen_inner(monitor)
.flush()
.expect("Failed to change window fullscreen state");
self.invalidate_cached_frame_extents();
}
fn get_rect(&self) -> Option<util::AaRect> {
// TODO: This might round-trip more times than needed.
2018-06-15 09:42:18 +10:00
if let (Some(position), Some(size)) = (self.get_position_physical(), self.get_outer_size_physical()) {
Some(util::AaRect::new(position, size))
} else {
None
Move fullscreen modes to not touch physical resolutions (#270) * Fix X11 screen resolution change using XrandR The previous XF86 resolution switching was broken and everything seems to have moved on to xrandr. Use that instead while cleaning up the code a bit as well. * Use XRandR for actual multiscreen support in X11 * Use actual monitor names in X11 * Get rid of ptr::read usage in X11 * Use a bog standard Vec instead of VecDeque * Get rid of the XRandR mode switching stuff Wayland has made the decision that apps shouldn't change screen resolutions and just take the screens as they've been setup. In the modern world where GPU scaling is cheap and LCD panels are scaling anyway it makes no sense to make "physical" resolution changes when software should be taking care of it. This massively simplifies the code and makes it easier to extend to more niche setups like MST and videowalls. * Rename fullscreen options to match new semantics * Implement XRandR 1.5 support * Get rid of the FullScreen enum Moving to just having two states None and Some(MonitorId) and then being able to set full screen in the current monitor with something like: window.set_fullscreen(Some(window.current_monitor())); * Implement Window::get_current_monitor() Do it by iterating over the available monitors and finding which has the biggest overlap with the window. For this MonitorId needs a new get_position() that needs to be implemented for all platforms. * Add unimplemented get_position() to all MonitorId * Make get_current_monitor() platform specific * Add unimplemented get_current_monitor() to all * Implement proper primary monitor selection in X11 * Shut up some warnings * Remove libxxf86vm package from travis Since we're no longer using XF86 there's no need to keep the package around for CI. * Don't use new struct syntax * Fix indentation * Adjust Android/iOS fullscreen/maximized On Android and iOS we can assume single screen apps that are already fullscreen and maximized so there are a few methods that are implemented by just returning a fixed value or not doing anything. * Mark OSX/Win fullscreen/maximized unimplemented()! These would be safe as no-ops but we should make it explicit so there is more of an incentive to actually implement them.
2017-09-07 18:33:46 +10:00
}
}
Move fullscreen modes to not touch physical resolutions (#270) * Fix X11 screen resolution change using XrandR The previous XF86 resolution switching was broken and everything seems to have moved on to xrandr. Use that instead while cleaning up the code a bit as well. * Use XRandR for actual multiscreen support in X11 * Use actual monitor names in X11 * Get rid of ptr::read usage in X11 * Use a bog standard Vec instead of VecDeque * Get rid of the XRandR mode switching stuff Wayland has made the decision that apps shouldn't change screen resolutions and just take the screens as they've been setup. In the modern world where GPU scaling is cheap and LCD panels are scaling anyway it makes no sense to make "physical" resolution changes when software should be taking care of it. This massively simplifies the code and makes it easier to extend to more niche setups like MST and videowalls. * Rename fullscreen options to match new semantics * Implement XRandR 1.5 support * Get rid of the FullScreen enum Moving to just having two states None and Some(MonitorId) and then being able to set full screen in the current monitor with something like: window.set_fullscreen(Some(window.current_monitor())); * Implement Window::get_current_monitor() Do it by iterating over the available monitors and finding which has the biggest overlap with the window. For this MonitorId needs a new get_position() that needs to be implemented for all platforms. * Add unimplemented get_position() to all MonitorId * Make get_current_monitor() platform specific * Add unimplemented get_current_monitor() to all * Implement proper primary monitor selection in X11 * Shut up some warnings * Remove libxxf86vm package from travis Since we're no longer using XF86 there's no need to keep the package around for CI. * Don't use new struct syntax * Fix indentation * Adjust Android/iOS fullscreen/maximized On Android and iOS we can assume single screen apps that are already fullscreen and maximized so there are a few methods that are implemented by just returning a fixed value or not doing anything. * Mark OSX/Win fullscreen/maximized unimplemented()! These would be safe as no-ops but we should make it explicit so there is more of an incentive to actually implement them.
2017-09-07 18:33:46 +10:00
2018-06-15 09:42:18 +10:00
#[inline]
pub fn get_current_monitor(&self) -> X11MonitorId {
2018-06-15 09:42:18 +10:00
let monitor = self.shared_state
.lock()
.last_monitor
.as_ref()
.cloned();
monitor
.unwrap_or_else(|| {
let monitor = self.xconn.get_monitor_for_window(self.get_rect()).to_owned();
self.shared_state.lock().last_monitor = Some(monitor.clone());
monitor
})
Move fullscreen modes to not touch physical resolutions (#270) * Fix X11 screen resolution change using XrandR The previous XF86 resolution switching was broken and everything seems to have moved on to xrandr. Use that instead while cleaning up the code a bit as well. * Use XRandR for actual multiscreen support in X11 * Use actual monitor names in X11 * Get rid of ptr::read usage in X11 * Use a bog standard Vec instead of VecDeque * Get rid of the XRandR mode switching stuff Wayland has made the decision that apps shouldn't change screen resolutions and just take the screens as they've been setup. In the modern world where GPU scaling is cheap and LCD panels are scaling anyway it makes no sense to make "physical" resolution changes when software should be taking care of it. This massively simplifies the code and makes it easier to extend to more niche setups like MST and videowalls. * Rename fullscreen options to match new semantics * Implement XRandR 1.5 support * Get rid of the FullScreen enum Moving to just having two states None and Some(MonitorId) and then being able to set full screen in the current monitor with something like: window.set_fullscreen(Some(window.current_monitor())); * Implement Window::get_current_monitor() Do it by iterating over the available monitors and finding which has the biggest overlap with the window. For this MonitorId needs a new get_position() that needs to be implemented for all platforms. * Add unimplemented get_position() to all MonitorId * Make get_current_monitor() platform specific * Add unimplemented get_current_monitor() to all * Implement proper primary monitor selection in X11 * Shut up some warnings * Remove libxxf86vm package from travis Since we're no longer using XF86 there's no need to keep the package around for CI. * Don't use new struct syntax * Fix indentation * Adjust Android/iOS fullscreen/maximized On Android and iOS we can assume single screen apps that are already fullscreen and maximized so there are a few methods that are implemented by just returning a fixed value or not doing anything. * Mark OSX/Win fullscreen/maximized unimplemented()! These would be safe as no-ops but we should make it explicit so there is more of an incentive to actually implement them.
2017-09-07 18:33:46 +10:00
}
pub fn get_available_monitors(&self) -> Vec<X11MonitorId> {
self.xconn.get_available_monitors()
}
pub fn get_primary_monitor(&self) -> X11MonitorId {
self.xconn.get_primary_monitor()
}
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
fn set_maximized_inner(&self, maximized: bool) -> util::Flusher {
2018-05-29 21:48:47 +10:00
let horz_atom = unsafe { self.xconn.get_atom_unchecked(b"_NET_WM_STATE_MAXIMIZED_HORZ\0") };
let vert_atom = unsafe { self.xconn.get_atom_unchecked(b"_NET_WM_STATE_MAXIMIZED_VERT\0") };
self.set_netwm(maximized.into(), (horz_atom as c_long, vert_atom as c_long, 0, 0))
}
2018-06-15 09:42:18 +10:00
#[inline]
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
pub fn set_maximized(&self, maximized: bool) {
self.set_maximized_inner(maximized)
.flush()
.expect("Failed to change window maximization");
self.invalidate_cached_frame_extents();
Move fullscreen modes to not touch physical resolutions (#270) * Fix X11 screen resolution change using XrandR The previous XF86 resolution switching was broken and everything seems to have moved on to xrandr. Use that instead while cleaning up the code a bit as well. * Use XRandR for actual multiscreen support in X11 * Use actual monitor names in X11 * Get rid of ptr::read usage in X11 * Use a bog standard Vec instead of VecDeque * Get rid of the XRandR mode switching stuff Wayland has made the decision that apps shouldn't change screen resolutions and just take the screens as they've been setup. In the modern world where GPU scaling is cheap and LCD panels are scaling anyway it makes no sense to make "physical" resolution changes when software should be taking care of it. This massively simplifies the code and makes it easier to extend to more niche setups like MST and videowalls. * Rename fullscreen options to match new semantics * Implement XRandR 1.5 support * Get rid of the FullScreen enum Moving to just having two states None and Some(MonitorId) and then being able to set full screen in the current monitor with something like: window.set_fullscreen(Some(window.current_monitor())); * Implement Window::get_current_monitor() Do it by iterating over the available monitors and finding which has the biggest overlap with the window. For this MonitorId needs a new get_position() that needs to be implemented for all platforms. * Add unimplemented get_position() to all MonitorId * Make get_current_monitor() platform specific * Add unimplemented get_current_monitor() to all * Implement proper primary monitor selection in X11 * Shut up some warnings * Remove libxxf86vm package from travis Since we're no longer using XF86 there's no need to keep the package around for CI. * Don't use new struct syntax * Fix indentation * Adjust Android/iOS fullscreen/maximized On Android and iOS we can assume single screen apps that are already fullscreen and maximized so there are a few methods that are implemented by just returning a fixed value or not doing anything. * Mark OSX/Win fullscreen/maximized unimplemented()! These would be safe as no-ops but we should make it explicit so there is more of an incentive to actually implement them.
2017-09-07 18:33:46 +10:00
}
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
fn set_title_inner(&self, title: &str) -> util::Flusher {
2018-05-29 21:48:47 +10:00
let wm_name_atom = unsafe { self.xconn.get_atom_unchecked(b"_NET_WM_NAME\0") };
let utf8_atom = unsafe { self.xconn.get_atom_unchecked(b"UTF8_STRING\0") };
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
let title = CString::new(title).expect("Window title contained null byte");
unsafe {
2018-05-29 21:48:47 +10:00
(self.xconn.xlib.XStoreName)(
self.xconn.display,
self.xwindow,
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
title.as_ptr() as *const c_char,
);
2018-05-29 21:48:47 +10:00
self.xconn.change_property(
self.xwindow,
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
wm_name_atom,
utf8_atom,
util::PropMode::Replace,
title.as_bytes(),
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
)
}
}
2015-12-24 20:57:08 +11:00
2018-06-15 09:42:18 +10:00
#[inline]
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
pub fn set_title(&self, title: &str) {
self.set_title_inner(title)
.flush()
.expect("Failed to set window title");
}
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
fn set_decorations_inner(&self, decorations: bool) -> util::Flusher {
2018-05-29 21:48:47 +10:00
let wm_hints = unsafe { self.xconn.get_atom_unchecked(b"_MOTIF_WM_HINTS\0") };
self.xconn.change_property(
self.xwindow,
2018-05-27 22:49:35 +10:00
wm_hints,
wm_hints,
util::PropMode::Replace,
&[
util::MWM_HINTS_DECORATIONS, // flags
0, // functions
decorations as c_ulong, // decorations
0, // input mode
0, // status
],
)
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
}
2018-06-15 09:42:18 +10:00
#[inline]
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
pub fn set_decorations(&self, decorations: bool) {
self.set_decorations_inner(decorations)
.flush()
.expect("Failed to set decoration state");
self.invalidate_cached_frame_extents();
}
fn set_always_on_top_inner(&self, always_on_top: bool) -> util::Flusher {
2018-05-29 21:48:47 +10:00
let above_atom = unsafe { self.xconn.get_atom_unchecked(b"_NET_WM_STATE_ABOVE\0") };
self.set_netwm(always_on_top.into(), (above_atom as c_long, 0, 0, 0))
}
2018-06-15 09:42:18 +10:00
#[inline]
pub fn set_always_on_top(&self, always_on_top: bool) {
self.set_always_on_top_inner(always_on_top)
.flush()
.expect("Failed to set always-on-top state");
}
2018-05-08 07:36:21 +10:00
fn set_icon_inner(&self, icon: Icon) -> util::Flusher {
2018-05-29 21:48:47 +10:00
let icon_atom = unsafe { self.xconn.get_atom_unchecked(b"_NET_WM_ICON\0") };
2018-05-08 07:36:21 +10:00
let data = icon.to_cardinals();
2018-05-29 21:48:47 +10:00
self.xconn.change_property(
self.xwindow,
2018-05-27 22:49:35 +10:00
icon_atom,
ffi::XA_CARDINAL,
util::PropMode::Replace,
data.as_slice(),
)
2018-05-08 07:36:21 +10:00
}
fn unset_icon_inner(&self) -> util::Flusher {
2018-05-29 21:48:47 +10:00
let icon_atom = unsafe { self.xconn.get_atom_unchecked(b"_NET_WM_ICON\0") };
2018-05-08 07:36:21 +10:00
let empty_data: [util::Cardinal; 0] = [];
2018-05-29 21:48:47 +10:00
self.xconn.change_property(
self.xwindow,
2018-05-27 22:49:35 +10:00
icon_atom,
ffi::XA_CARDINAL,
util::PropMode::Replace,
&empty_data,
)
2018-05-08 07:36:21 +10:00
}
2018-06-15 09:42:18 +10:00
#[inline]
2018-05-08 07:36:21 +10:00
pub fn set_window_icon(&self, icon: Option<Icon>) {
match icon {
Some(icon) => self.set_icon_inner(icon),
None => self.unset_icon_inner(),
}.flush().expect("Failed to set icons");
}
2018-06-15 09:42:18 +10:00
#[inline]
pub fn show(&self) {
unsafe {
2018-05-29 21:48:47 +10:00
(self.xconn.xlib.XMapRaised)(self.xconn.display, self.xwindow);
self.xconn.flush_requests()
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
.expect("Failed to call XMapRaised");
}
}
2018-06-15 09:42:18 +10:00
#[inline]
pub fn hide(&self) {
unsafe {
2018-05-29 21:48:47 +10:00
(self.xconn.xlib.XUnmapWindow)(self.xconn.display, self.xwindow);
self.xconn.flush_requests()
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
.expect("Failed to call XUnmapWindow");
}
}
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
fn update_cached_frame_extents(&self) {
2018-05-29 21:48:47 +10:00
let extents = self.xconn.get_frame_extents_heuristic(self.xwindow, self.root);
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
(*self.shared_state.lock()).frame_extents = Some(extents);
}
2018-06-15 09:42:18 +10:00
pub(crate) fn invalidate_cached_frame_extents(&self) {
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
(*self.shared_state.lock()).frame_extents.take();
}
2018-06-15 09:42:18 +10:00
pub(crate) fn get_position_physical(&self) -> Option<(i32, i32)> {
let extents = (*self.shared_state.lock()).frame_extents.clone();
if let Some(extents) = extents {
self.get_inner_position_physical()
.map(|(x, y)| extents.inner_pos_to_outer(x, y))
} else {
self.update_cached_frame_extents();
self.get_position_physical()
}
}
2015-09-21 22:42:05 +10:00
#[inline]
2018-06-15 09:42:18 +10:00
pub fn get_position(&self) -> Option<LogicalPosition> {
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
let extents = (*self.shared_state.lock()).frame_extents.clone();
if let Some(extents) = extents {
2018-06-15 09:42:18 +10:00
self.get_inner_position()
.map(|logical| extents.inner_pos_to_outer_logical(logical, self.get_hidpi_factor()))
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
} else {
self.update_cached_frame_extents();
self.get_position()
}
}
2018-06-15 09:42:18 +10:00
pub(crate) fn get_inner_position_physical(&self) -> Option<(i32, i32)> {
self.xconn.translate_coords(self.xwindow, self.root)
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
.ok()
.map(|coords| (coords.x_rel_root, coords.y_rel_root))
}
2018-06-15 09:42:18 +10:00
#[inline]
pub fn get_inner_position(&self) -> Option<LogicalPosition> {
self.get_inner_position_physical()
.map(|coords| self.logicalize_coords(coords))
}
pub(crate) fn set_position_inner(&self, mut x: i32, mut y: i32) -> util::Flusher {
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
// There are a few WMs that set client area position rather than window position, so
// we'll translate for consistency.
if util::wm_name_is_one_of(&["Enlightenment", "FVWM"]) {
let extents = (*self.shared_state.lock()).frame_extents.clone();
if let Some(extents) = extents {
x += extents.frame_extents.left as i32;
y += extents.frame_extents.top as i32;
} else {
self.update_cached_frame_extents();
2018-06-15 09:42:18 +10:00
return self.set_position_inner(x, y);
}
}
unsafe {
2018-05-29 21:48:47 +10:00
(self.xconn.xlib.XMoveWindow)(
self.xconn.display,
self.xwindow,
x as c_int,
y as c_int,
);
2018-06-15 09:42:18 +10:00
}
util::Flusher::new(&self.xconn)
}
pub(crate) fn set_position_physical(&self, x: i32, y: i32) {
self.set_position_inner(x, y)
.flush()
.expect("Failed to call `XMoveWindow`");
}
2015-09-21 22:42:05 +10:00
#[inline]
2018-06-15 09:42:18 +10:00
pub fn set_position(&self, logical_position: LogicalPosition) {
let (x, y) = logical_position.to_physical(self.get_hidpi_factor()).into();
self.set_position_physical(x, y);
}
pub(crate) fn get_inner_size_physical(&self) -> Option<(u32, u32)> {
2018-05-29 21:48:47 +10:00
self.xconn.get_geometry(self.xwindow)
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
.ok()
.map(|geo| (geo.width, geo.height))
}
2015-09-21 22:42:05 +10:00
#[inline]
2018-06-15 09:42:18 +10:00
pub fn get_inner_size(&self) -> Option<LogicalSize> {
self.get_inner_size_physical()
.map(|size| self.logicalize_size(size))
}
pub(crate) fn get_outer_size_physical(&self) -> Option<(u32, u32)> {
let extents = self.shared_state.lock().frame_extents.clone();
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
if let Some(extents) = extents {
2018-06-15 09:42:18 +10:00
self.get_inner_size_physical()
.map(|(w, h)| extents.inner_size_to_outer(w, h))
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
} else {
self.update_cached_frame_extents();
2018-06-15 09:42:18 +10:00
self.get_outer_size_physical()
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
}
}
2015-09-21 22:42:05 +10:00
#[inline]
2018-06-15 09:42:18 +10:00
pub fn get_outer_size(&self) -> Option<LogicalSize> {
let extents = self.shared_state.lock().frame_extents.clone();
if let Some(extents) = extents {
self.get_inner_size()
.map(|logical| extents.inner_size_to_outer_logical(logical, self.get_hidpi_factor()))
} else {
self.update_cached_frame_extents();
self.get_outer_size()
}
}
pub(crate) fn set_inner_size_physical(&self, width: u32, height: u32) {
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
unsafe {
2018-05-29 21:48:47 +10:00
(self.xconn.xlib.XResizeWindow)(
self.xconn.display,
self.xwindow,
width as c_uint,
height as c_uint,
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
);
2018-05-29 21:48:47 +10:00
self.xconn.flush_requests()
2018-06-15 09:42:18 +10:00
}.expect("Failed to call `XResizeWindow`");
}
2018-06-15 09:42:18 +10:00
#[inline]
pub fn set_inner_size(&self, logical_size: LogicalSize) {
let dpi_factor = self.get_hidpi_factor();
let (width, height) = logical_size.to_physical(dpi_factor).into();
self.set_inner_size_physical(width, height);
}
fn update_normal_hints<F>(&self, callback: F) -> Result<(), XError>
where F: FnOnce(&mut util::NormalHints) -> ()
{
2018-06-15 09:42:18 +10:00
let mut normal_hints = self.xconn.get_normal_hints(self.xwindow)?;
callback(&mut normal_hints);
self.xconn.set_normal_hints(self.xwindow, normal_hints).flush()
}
2018-06-15 09:42:18 +10:00
pub(crate) fn set_min_dimensions_physical(&self, dimensions: Option<(u32, u32)>) {
self.update_normal_hints(|normal_hints| normal_hints.set_min_size(dimensions))
.expect("Failed to call `XSetWMNormalHints`");
}
2018-06-15 09:42:18 +10:00
#[inline]
pub fn set_min_dimensions(&self, logical_dimensions: Option<LogicalSize>) {
self.shared_state.lock().min_dimensions = logical_dimensions;
let physical_dimensions = logical_dimensions.map(|logical_dimensions| {
logical_dimensions.to_physical(self.get_hidpi_factor()).into()
});
self.set_min_dimensions_physical(physical_dimensions);
}
2018-06-15 09:42:18 +10:00
pub(crate) fn set_max_dimensions_physical(&self, dimensions: Option<(u32, u32)>) {
self.update_normal_hints(|normal_hints| normal_hints.set_max_size(dimensions))
.expect("Failed to call `XSetWMNormalHints`");
}
2018-06-15 09:42:18 +10:00
#[inline]
pub fn set_max_dimensions(&self, logical_dimensions: Option<LogicalSize>) {
self.shared_state.lock().max_dimensions = logical_dimensions;
let physical_dimensions = logical_dimensions.map(|logical_dimensions| {
logical_dimensions.to_physical(self.get_hidpi_factor()).into()
});
self.set_max_dimensions_physical(physical_dimensions);
}
2018-06-15 09:42:18 +10:00
pub(crate) fn adjust_for_dpi(
&self,
old_dpi_factor: f64,
new_dpi_factor: f64,
width: f64,
height: f64,
) -> (f64, f64, util::Flusher) {
let scale_factor = new_dpi_factor / old_dpi_factor;
let new_width = width * scale_factor;
let new_height = height * scale_factor;
self.update_normal_hints(|normal_hints| {
let dpi_adjuster = |(width, height): (u32, u32)| -> (u32, u32) {
let new_width = width as f64 * scale_factor;
let new_height = height as f64 * scale_factor;
(new_width.round() as u32, new_height.round() as u32)
};
let max_size = normal_hints.get_max_size().map(&dpi_adjuster);
let min_size = normal_hints.get_min_size().map(&dpi_adjuster);
let resize_increments = normal_hints.get_resize_increments().map(&dpi_adjuster);
let base_size = normal_hints.get_base_size().map(&dpi_adjuster);
normal_hints.set_max_size(max_size);
normal_hints.set_min_size(min_size);
normal_hints.set_resize_increments(resize_increments);
normal_hints.set_base_size(base_size);
}).expect("Failed to update normal hints");
unsafe {
2018-06-15 09:42:18 +10:00
(self.xconn.xlib.XResizeWindow)(
self.xconn.display,
self.xwindow,
new_width.round() as c_uint,
new_height.round() as c_uint,
);
}
(new_width, new_height, util::Flusher::new(&self.xconn))
}
pub fn set_resizable(&self, resizable: bool) {
if util::wm_name_is_one_of(&["Xfwm4"]) {
// Making the window unresizable on Xfwm prevents further changes to `WM_NORMAL_HINTS` from being detected.
// This makes it impossible for resizing to be re-enabled, and also breaks DPI scaling. As such, we choose
// the lesser of two evils and do nothing.
warn!("To avoid a WM bug, disabling resizing has no effect on Xfwm4");
return;
}
2018-06-15 09:42:18 +10:00
let (logical_min, logical_max) = if resizable {
let shared_state_lock = self.shared_state.lock();
(shared_state_lock.min_dimensions, shared_state_lock.max_dimensions)
} else {
2018-06-15 09:42:18 +10:00
let window_size = self.get_inner_size();
(window_size.clone(), window_size)
};
let dpi_factor = self.get_hidpi_factor();
let min_dimensions = logical_min
.map(|logical_size| logical_size.to_physical(dpi_factor))
.map(Into::into);
let max_dimensions = logical_max
.map(|logical_size| logical_size.to_physical(dpi_factor))
.map(Into::into);
self.update_normal_hints(|normal_hints| {
normal_hints.set_min_size(min_dimensions);
normal_hints.set_max_size(max_dimensions);
}).expect("Failed to call `XSetWMNormalHints`");
}
#[inline]
pub fn get_xlib_display(&self) -> *mut c_void {
2018-05-29 21:48:47 +10:00
self.xconn.display as _
}
2016-10-20 03:11:02 +11:00
#[inline]
pub fn get_xlib_screen_id(&self) -> c_int {
2018-05-29 21:48:47 +10:00
self.screen_id
2016-10-20 03:11:02 +11:00
}
#[inline]
pub fn get_xlib_xconnection(&self) -> Arc<XConnection> {
2018-05-29 21:48:47 +10:00
Arc::clone(&self.xconn)
2016-10-20 03:11:02 +11:00
}
#[inline]
pub fn get_xlib_window(&self) -> c_ulong {
2018-05-29 21:48:47 +10:00
self.xwindow
}
2015-09-21 22:42:05 +10:00
#[inline]
pub fn get_xcb_connection(&self) -> *mut c_void {
unsafe {
2018-05-29 21:48:47 +10:00
(self.xconn.xlib_xcb.XGetXCBConnection)(self.xconn.display) as *mut _
}
}
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
fn load_cursor(&self, name: &[u8]) -> ffi::Cursor {
unsafe {
2018-05-29 21:48:47 +10:00
(self.xconn.xcursor.XcursorLibraryLoadCursor)(
self.xconn.display,
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
name.as_ptr() as *const c_char,
)
}
}
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
fn load_first_existing_cursor(&self, names: &[&[u8]]) -> ffi::Cursor {
for name in names.iter() {
let xcursor = self.load_cursor(name);
if xcursor != 0 {
return xcursor;
}
}
0
}
fn get_cursor(&self, cursor: MouseCursor) -> ffi::Cursor {
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
let load = |name: &[u8]| {
self.load_cursor(name)
};
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
let loadn = |names: &[&[u8]]| {
self.load_first_existing_cursor(names)
};
// Try multiple names in some cases where the name
// differs on the desktop environments or themes.
//
// Try the better looking (or more suiting) names first.
match cursor {
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
MouseCursor::Alias => load(b"link\0"),
MouseCursor::Arrow => load(b"arrow\0"),
MouseCursor::Cell => load(b"plus\0"),
MouseCursor::Copy => load(b"copy\0"),
MouseCursor::Crosshair => load(b"crosshair\0"),
MouseCursor::Default => load(b"left_ptr\0"),
MouseCursor::Hand => loadn(&[b"hand2\0", b"hand1\0"]),
MouseCursor::Help => load(b"question_arrow\0"),
MouseCursor::Move => load(b"move\0"),
MouseCursor::Grab => loadn(&[b"openhand\0", b"grab\0"]),
MouseCursor::Grabbing => loadn(&[b"closedhand\0", b"grabbing\0"]),
MouseCursor::Progress => load(b"left_ptr_watch\0"),
MouseCursor::AllScroll => load(b"all-scroll\0"),
MouseCursor::ContextMenu => load(b"context-menu\0"),
MouseCursor::NoDrop => loadn(&[b"no-drop\0", b"circle\0"]),
MouseCursor::NotAllowed => load(b"crossed_circle\0"),
// Resize cursors
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
MouseCursor::EResize => load(b"right_side\0"),
MouseCursor::NResize => load(b"top_side\0"),
MouseCursor::NeResize => load(b"top_right_corner\0"),
MouseCursor::NwResize => load(b"top_left_corner\0"),
MouseCursor::SResize => load(b"bottom_side\0"),
MouseCursor::SeResize => load(b"bottom_right_corner\0"),
MouseCursor::SwResize => load(b"bottom_left_corner\0"),
MouseCursor::WResize => load(b"left_side\0"),
MouseCursor::EwResize => load(b"h_double_arrow\0"),
MouseCursor::NsResize => load(b"v_double_arrow\0"),
MouseCursor::NwseResize => loadn(&[b"bd_double_arrow\0", b"size_bdiag\0"]),
MouseCursor::NeswResize => loadn(&[b"fd_double_arrow\0", b"size_fdiag\0"]),
MouseCursor::ColResize => loadn(&[b"split_h\0", b"h_double_arrow\0"]),
MouseCursor::RowResize => loadn(&[b"split_v\0", b"v_double_arrow\0"]),
MouseCursor::Text => loadn(&[b"text\0", b"xterm\0"]),
MouseCursor::VerticalText => load(b"vertical-text\0"),
MouseCursor::Wait => load(b"watch\0"),
MouseCursor::ZoomIn => load(b"zoom-in\0"),
MouseCursor::ZoomOut => load(b"zoom-out\0"),
}
}
fn update_cursor(&self, cursor: ffi::Cursor) {
unsafe {
2018-05-29 21:48:47 +10:00
(self.xconn.xlib.XDefineCursor)(self.xconn.display, self.xwindow, cursor);
if cursor != 0 {
2018-05-29 21:48:47 +10:00
(self.xconn.xlib.XFreeCursor)(self.xconn.display, cursor);
}
2018-05-29 21:48:47 +10:00
self.xconn.flush_requests().expect("Failed to set or free the cursor");
}
}
2018-06-15 09:42:18 +10:00
#[inline]
pub fn set_cursor(&self, cursor: MouseCursor) {
2018-05-29 21:48:47 +10:00
*self.cursor.lock() = cursor;
if !*self.cursor_hidden.lock() {
2018-05-29 21:48:47 +10:00
self.update_cursor(self.get_cursor(cursor));
}
}
// TODO: This could maybe be cached. I don't think it's worth
// the complexity, since cursor changes are not so common,
// and this is just allocating a 1x1 pixmap...
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
fn create_empty_cursor(&self) -> Option<ffi::Cursor> {
let data = 0;
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
let pixmap = unsafe {
2018-05-29 21:48:47 +10:00
(self.xconn.xlib.XCreateBitmapFromData)(
self.xconn.display,
self.xwindow,
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
&data,
1,
1,
)
};
if pixmap == 0 {
// Failed to allocate
return None;
}
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
let cursor = unsafe {
// We don't care about this color, since it only fills bytes
// in the pixmap which are not 0 in the mask.
let dummy_color: ffi::XColor = mem::uninitialized();
2018-05-29 21:48:47 +10:00
let cursor = (self.xconn.xlib.XCreatePixmapCursor)(
self.xconn.display,
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
pixmap,
pixmap,
&dummy_color as *const _ as *mut _,
&dummy_color as *const _ as *mut _,
0,
0,
);
2018-05-29 21:48:47 +10:00
(self.xconn.xlib.XFreePixmap)(self.xconn.display, pixmap);
cursor
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
};
Some(cursor)
}
2018-06-15 09:42:18 +10:00
#[inline]
pub fn grab_cursor(&self, grab: bool) -> Result<(), String> {
let mut grabbed_lock = self.cursor_grabbed.lock();
if grab == *grabbed_lock { return Ok(()); }
unsafe {
// We ungrab before grabbing to prevent passive grabs from causing `AlreadyGrabbed`.
// Therefore, this is common to both codepaths.
(self.xconn.xlib.XUngrabPointer)(self.xconn.display, ffi::CurrentTime);
2016-03-22 05:42:54 +11:00
}
let result = if grab {
let result = unsafe {
(self.xconn.xlib.XGrabPointer)(
self.xconn.display,
self.xwindow,
ffi::True,
(
ffi::ButtonPressMask
| ffi::ButtonReleaseMask
| ffi::EnterWindowMask
| ffi::LeaveWindowMask
| ffi::PointerMotionMask
| ffi::PointerMotionHintMask
| ffi::Button1MotionMask
| ffi::Button2MotionMask
| ffi::Button3MotionMask
| ffi::Button4MotionMask
| ffi::Button5MotionMask
| ffi::ButtonMotionMask
| ffi::KeymapStateMask
) as c_uint,
ffi::GrabModeAsync,
ffi::GrabModeAsync,
self.xwindow,
0,
ffi::CurrentTime,
)
};
2016-03-22 05:42:54 +11:00
match result {
ffi::GrabSuccess => Ok(()),
ffi::AlreadyGrabbed => Err("Cursor could not be grabbed: already grabbed by another client"),
ffi::GrabInvalidTime => Err("Cursor could not be grabbed: invalid time"),
ffi::GrabNotViewable => Err("Cursor could not be grabbed: grab location not viewable"),
ffi::GrabFrozen => Err("Cursor could not be grabbed: frozen by another client"),
_ => unreachable!(),
}.map_err(|err| err.to_owned())
} else {
self.xconn.flush_requests()
.map_err(|err| format!("Failed to call `XUngrabPointer`: {:?}", err))
};
if result.is_ok() {
*grabbed_lock = grab;
2016-03-22 05:42:54 +11:00
}
result
}
#[inline]
pub fn hide_cursor(&self, hide: bool) {
let mut hidden_lock = self.cursor_hidden.lock();
if hide == *hidden_lock {return; }
let cursor = if hide {
self.create_empty_cursor().expect("Failed to create empty cursor")
} else {
self.get_cursor(*self.cursor.lock())
};
*hidden_lock = hide;
drop(hidden_lock);
self.update_cursor(cursor);
}
2018-06-15 09:42:18 +10:00
#[inline]
pub fn get_hidpi_factor(&self) -> f64 {
self.get_current_monitor().hidpi_factor
}
pub fn set_cursor_position_physical(&self, x: i32, y: i32) -> Result<(), String> {
unsafe {
2018-05-29 21:48:47 +10:00
(self.xconn.xlib.XWarpPointer)(
self.xconn.display,
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
0,
2018-05-29 21:48:47 +10:00
self.xwindow,
X11: General cleanup (#491) * X11: General cleanup This is almost entirely internal changes, and as usual, doesn't actually fix any problems people have complained about. - `XSetInputFocus` can't be called before the window is visible. This was previously handled by looping (with a sleep) and querying for the window's state until it was visible. Now we use `XIfEvent`, which blocks until we receive `VisibilityNotify`. Note that this can't be replaced with an `XSync` (I tried). - We now call `XSync` at the end of window creation and check for errors, assuring that broken windows are never returned. When creating invisible windows, this is the only time the output buffer is flushed during the entire window creation process (AFAIK). For visible windows, `XIfEvent` will generally flush, but window creation has overall been reduced to the minimum number of flushes. - `check_errors().expect()` has been a common pattern throughout the backend, but it seems that people (myself included) didn't make a distinction between using it after synchronous requests and asynchronous requests. Now we only use it after async requests if we flush first, though this still isn't correct (since the request likely hasn't been processed yet). The only real solution (besides forcing a sync *every time*) is to handle asynchronous errors *asynchronously*. For future work, I plan on adding logging, though I don't plan on actually *handling* those errors; that's more of something to hope for in the hypothetical async/await XCB paradise. - We now flush whenever it makes sense to. `util::Flusher` was added to force contributors to be aware of the output buffer. - `Window::get_position`, `Window::get_inner_position`, `Window::get_inner_size`, and `Window::get_outer_size` previously all required *several* round-trips. On my machine, it took an average of around 80µs. They've now been reduced to one round-trip each, which reduces my measurement to 16µs. This was accomplished simply by caching the frame extents, which are expensive to calculate (due to various queries and heuristics), but change infrequently and predictably. I still recommend that application developers use these methods sparingly and generally prefer storing the values from `Resized`/`Moved`, as that's zero overhead. - The above change enabled me to change the `Moved` event to supply window positions, rather than client area positions. Additionally, we no longer generate `Moved` for real (as in, not synthetic) `ConfigureNotify` events. Real `ConfigureNotify` events contain positions relative to the parent window, which are typically constant and useless. Since that position would be completely different from the root-relative positions supplied by synthetic `ConfigureNotify` events (which are the vast majority of them), that meant real `ConfigureNotify` events would *always* be detected as the position having changed, so the resultant `Moved` was multiple levels of misleading. In practice, this meant a garbage `Moved` would be sent every time the window was resized; now a resize has to actually change the window's position to be accompanied by `Moved`. - Every time we processed an `XI_Enter` event, we would leak 4 bytes via `util::query_pointer` (`XIQueryPointer`). `XIButtonState` contains a dynamically-allocated mask field which we weren't freeing. As this event occurs with fairly high frequency, long-running applications could easily accumulate substantial leaks. `util::PointerState::drop` now takes care of this. - The `util` module has been split up into several sub-modules, as it was getting rather lengthy. This accounts for a significant part of this diff, unfortunately. - Atoms are now cached. Xlib caches them too, so `XInternAtom` wouldn't typically be a round-trip anyway, but the added complexity is negligible. - Switched from `std::sync::Mutex` to `parking_lot::Mutex` (within this backend). There appears to be no downside to this, but if anyone finds one, this would be easy to revert. - The WM name and supported hints are now global to the application, and are updated upon `ReparentNotify`, which should detect when the WM was replaced (assuming a reparenting WM was involved, that is). Previously, these values were per-window and would never update, meaning replacing the WM could potentially lead to (admittedly very minor) problems. - The result of `Window2::create_empty_cursor` will now only be used if it actually succeeds. - `Window2::load_cursor` no longer re-allocates the cursor name. - `util::lookup_utf8` previously allocated a 16-byte buffer on the heap. Now it allocates a 1024-byte buffer on the stack, and falls back to dynamic allocation if the buffer is too small. This base buffer size is admittedly gratuitous, but less so if you're using IME. - `with_c_str` was finally removed. - Added `util::Format` enum to help prevent goofs when dealing with format arguments. - `util::get_property`, something I added way back in my first winit PR, only calculated offsets correctly for `util::Format::Char`. This was concealed by the accomodating buffer size, as it would be very rare for the offset to be needed; however, testing with a buffer size of 1, `util::Format::Long` would read from the same offset multiple times, and `util::Format::Short` would miss data. This function now works correctly for all formats, relying on the simple fact that the offset increases by the buffer size on each iteration. We also account for the extra byte that `XGetWindowProperty` allocates at the end of the buffer, and copy data from the buffer instead of moving it and taking ownership of the pointer. - Drag and drop now reliably works in release mode. This is presumably related to the `util::get_property` changes. - `util::change_property` now exists, which should make it easier to add features in the future. - The `EventsLoop` device map is no longer in a mutex. - `XConnection` now implements `Debug`. - Valgrind no longer complains about anything related to winit (with either the system allocator or jemalloc, though "not having valgrind complain about jemalloc" isn't something to strive for). * X11: Add better diagnostics when initialization fails * X11: Handle XIQueryDevice failure * X11: Use correct types in error handler
2018-05-03 23:15:49 +10:00
0,
0,
0,
0,
x,
y,
);
self.xconn.flush_requests().map_err(|e| format!("`XWarpPointer` failed: {:?}", e))
}
}
2018-06-15 09:42:18 +10:00
#[inline]
pub fn set_cursor_position(&self, logical_position: LogicalPosition) -> Result<(), String> {
2018-06-15 09:42:18 +10:00
let (x, y) = logical_position.to_physical(self.get_hidpi_factor()).into();
self.set_cursor_position_physical(x, y)
}
pub(crate) fn set_ime_spot_physical(&self, x: i32, y: i32) {
let _ = self.ime_sender
.lock()
.send((self.xwindow, x as i16, y as i16));
}
#[inline]
pub fn set_ime_spot(&self, logical_spot: LogicalPosition) {
let (x, y) = logical_spot.to_physical(self.get_hidpi_factor()).into();
self.set_ime_spot_physical(x, y);
}
#[inline]
2018-05-29 21:48:47 +10:00
pub fn id(&self) -> WindowId { WindowId(self.xwindow) }
}